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PREFACE

Several years ago I became highly interested in the organization which had driven the discovery
of the Higgs boson, namely CERN. The Amsterdam University of Applied Sciences (AUAS) had
managed to enroll students for internships at CERN in the past and I was determined to figure out
how to become one of them. Eventually, I came into contact with Marten Teitsma who, unfortunately,
told me that the only students entering were almost always from the Technical Informatics (TI)
course. Together we arranged that I could follow additional courses from TI and set out to maximize
my change of entry. Years went by and eventually I set out to follow the minor software for science
which led to a project around the A Large Ion Collider Experiment (ALICE) detector. Additionally,
this minor also included a presentation from Nikhef about possible places for internships at CERN.
I prepared as best as I could for the application which underwent several revision and in the end I
was still not fully satisfied with my application. Nevertheless, around the end of November in 2018
I got the exciting news that my application was accepted. I could not be happier and I would not be
here without my friends and family who throughout all my frustration, stress and absence during
events kept supporting me.

Corne Lukken
March 2019

Arigatou Gozaimasu
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Abstract— Many organizations providing computer infrastruc-
ture on demand face similar problems. This kind of on demand
infrastructure is known as Infrastructure as a Service (IaaS). The
problems with IaaS typically come from users not being able
to correctly estimate the amount of resources they need. This
results in poor utilizations or over utilizations of the available
infrastructure. As a result large parts of the available hardware
end up being idle and unused while other parts might see bad
performance because of over utilizations.

At the European Organization for Nuclear Research (CERN)
they face similar problems. Their cloud is based on OpenStack,
an open source framework built from many different components
that facilitate IaaS. One of these components is called Watcher
and it is made to resolve under and over utilization, among
other things. However, Watcher is relatively new and not used as
extensively as other components. Earlier evaluations by CERN
showed that Watcher could not be deployed without changes.
The question remained: what changes are required to deploy
Watcher?

To determine required changes both Watcher and it’s com-
munity are evaluated. The results from these evaluations include
both experimental and literature based analysis. The community
is evaluated based on the platforms it uses to collaborate. Watcher
is evaluated using both source code and operational analysis.
Each identified possible improvement is described in its own
section were methods and results are individually addressed.

The evaluations lead to the rescheduling of bi-weekly meetings.
These meetings are of importance for the community to discuss
ongoing matters. Even though the evaluations identified some
possible improvements the community is surprisingly mature,
indicated by the correct and extensive use of many collaborative
tools.

The evaluation of Watcher itself identified many changes,
some of which were determined by previous evaluations done
by CERN. Primarily, the development of a new datasource is the
most crucial improvement to be developed. This new datasource
is required because all the other datasources are not used at
CERN. A series of other changes significantly improves the
performance by reducing the time to build so called data models.

The implemented datasource allows Grafana to be used with
its subsequent databases. The solution is extensible so that
any future Grafana database can be easily integrated into the
developed Grafana datasource.

The build time of the data model is reduced in three individual
changes. The first change provides a scope to limit the amount of
infrastructure that is taken into account. Because of the size of
CERN’s OpenStack infrastructure this change is essential. CERN
typically wants to limit this scope to a single so called cell. The
scope reduces the estimated build time from 26471 to 427 seconds
for a single cell on average. The second change improves the API
calls that are made during the construction of the data model
resulting in a further 32% performance improvement for single
and multiple cells. Finally, The last change introduces parallelism
to the API calls further reducing the time to build the data
model to 38 seconds for single and multiple cells. However, the
parallelism is still a proof of concept and can not be implemented
into Watcher in its current state.

Further work should evaluate the current strategies as it is
likely that they do not perform optimally or behave in unexpected
ways. By improving these strategies Watcher can be used instead
of just being deployed.

Index Terms—OpenStack, Watcher, MAPE-K, Grafana

1. PROSPECTS OF CERN’S WATCHER ENABLED
OPENSTACK CLOUD

The European Organization for Nuclear Research better
known as CERN was founded in 1954 and has become one
of Europe’s largest research organization. It aims to provide
fundamental research in the field of particle physics thereby
helping to discover what the universe is made of. To accom-
plish this mission CERN is home to the worlds largest particle
accelerator known as the Large Hadron Collider (LHC). With
over 30.000 people working with or for CERN every year
its main site located on the border between France and
Switzerland has become a large hub for science [1].

1.1. Resource Provisioning Services

The organizational structure of CERN is sectioned into
departments which are split into groups and those groups
are further divided into sections. One of these sections is the
RPS section. They are tasked with giving the right computer
resources to the right users in a fast, flexible, secure and scal-
able manner. Many pieces of literature have been written on
different approaches to reach these goals and large industries
have entire research & development (R&D) teams devoted
to improve these approaches and their implementations. Cur-
rently, a common approach to realize these high user demands
is infrastructure as a service (IaaS). This approach allows
users to interface with high-level Application Programming
Interfaces (API) to perform underlying tasks such as managing
computing resources, data partitioning and scaling. Typically,
the computing resources are managed through a hypervisor,
but in the case of OpenStack [2], a popular open source IaaS
framework, this can also be realized with containers and even
bare-metal.

Hypervisors and containers are methods1 to run applications
and even entire operating systems in an isolated manner such
that the underlying host processes and memory can not be
accessed from within the environment. Furthermore, hypervi-
sors and containers allow to limit the amount of resources their
guests can use and also allow to control networking and other
hardware interactions. These technologies are a fundamental
part of the IaaS paradigm.

The RPS team manages to leverage this IaaS paradigm
well with OpenStack this shows as many of its member
contribute heavily to OpenStack and have gained important
privileges within the community. The team is able to give
users access to resources quickly and easily which allows
them to work more effectively but it remains a problem for
users to correctly estimate the amount of resources they need.
Underutilized computing resources or resource contention due
to over utilization are the most common problems of any RPS
team. CERN’s RPS team sees the same problems in their large
scale OpenStack cloud. Which methods could reduce under
utilization and resource contention in an OpenStack based
cloud?

1Throuhgout this work, method will be short for methodology and constitute
an approach or set of behavior. It will not be used as terminology for functions
in programming languages.
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1.2. The OpenStack Cloud at CERN

The scale of CERN’s OpenStack cloud is very large with
over 15000 physical servers placed inside their data center
they can consume up to five megawatts of power [3]. The
servers consist of varieties of different hardware and many
different OpenStack components are deployed on top to cater
a large variety of user requests. Some of these servers are
placed in so called critical regions with their own separate
power and cooling systems. Typically servers are placed in
to so called cells which contain between 50 and 200 servers.
these cells allow OpenStack clouds to scale to larger sizes.
Additionally, these cells allow for flexibility to better meet user
demand. Because of the scale of this OpenStack cloud many
components are run in parallel with load balancers in front so
that the large amount of requests can be handled accordingly.

1.3. OpenStack

CERN has chosen for OpenStack as IaaS framework since
it has many desired features, one of which is a component
architecture. It consists of many smaller components, of which
many are optional but some are mandatory. The architecture
of OpenStack is similar to a micro service architecture where
many small components fulfill individual functions but the
overall system could continue to function even with many of
the individual components not functioning. The micro service
architecture has gained popularity ever since initial appear-
ances around 2012 although the original author is unknown.
Typically individual OpenStack components consist of several
processes but in most components it will be three processes
1) API, to handle requests from external components. 2) An-
alyze, gathering information about states of other services
or systems. 3) Execute, applying the changes based on the
gathered information. During the time of writing OpenStack
consists of roughly 40 different components of which eight are
considered core components [4]. The eight core components
realize networking, virtual machines, orchestration, storage for
objects, blocks and images and identification.

1.4. OpenStack Watcher

One of these OpenStack components is Watcher. It is a
relatively new project and "provides a flexible and scalable re-
source optimization service for multi-tenant OpenStack-based
clouds" [2]. Watcher uses the MAPE-K feedback loop invented
by IBM in 2005 [5] which is a four step loop developed
for autonomous and distributed systems and aims to provide
the common desired attributes of such systems, namely self-
healing & self-optimization. To perform this loop MAPE-K
relies on two external systems being the sensors & effectors
were these two systems are respectively the source of data
& where the decisions are applied to. With the data from the
sensors the feedback loop consisting of 1) Monitor 2) Analyze
3) Plan 4) Execute. It is executed using the Knowledge the
system should have, hence the K in MAPE-K.

Fig. 1: Diagram of MAPE-K feedback loop
CC-BY 4.00

Currently OpenStack Watcher has multiple datasources for
its sensory input being 1) Monasca [6] 2) Gnocchi [7]
3) Ceilometer [8]. All three of which are other OpenStack
components. However, at this time Ceilometer is being dep-
recated and the use of it should be avoided. For its effectors
Watcher relies heavily on interactions with Nova [9] which is
the OpenStack compute component but interactions with other
components such as Neutron [10] for networking or Ironic [11]
for bare-metal may also occur.

Watcher is split into three different small executables each
with their own tasks. 1) The API, which listens for incom-
ing messages to perform operations. 2) The decision-engine,
which executes strategies in order to create an action plan.
3) And the applier which executes the actions in an action
plan. In Watcher these strategies are made to achieve different
goals but these goals are primarily used for creating groups
and providing descriptions while they contain no actual logic.

1All figures and other creative works will be licensed under CC-BY 4.0
under the attribution of Corne Lukken unless otherwise specified.
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Fig. 2: Overview of Watcher’s architecture2

CC-BY 3.0 OpenStack foundation

The architecture of Watcher follows a very typical pattern
that is similar to many other OpenStack components. In this
architecture functionality of the component is split across three
different executables that communicate with each other using
a message bus. In the case of Watcher this message bus is
based on the Advanced Message Queuing Protocol (AQMP)
[12] similar to many other OpenStack components. Similarly,
the three executables share one central database.

These strategies use one of the available datasources to re-
trieve metrics such as cpu and memory utilization of compute
nodes and instances. These metrics are used by the strategies
to make decisions which are translated into actions put into
an action plan. At this point the action plans are stored in
the database and can be executed later. In addition to metrics
strategies also rely on a data model that is build at runtime.
that model contains all the information about compute nodes
and instances which exist in the OpenStack infrastructure.
This stores how many virtual cpus (vcpus) an instances has
or the amount of memory a compute_node has. Additionally,
information about storage clusters and the amount of available
disc space is stored.

Information about compute nodes or instances is collected
in data models using data model cluster collectors. Currently,
Watcher has three different data models and cluster collectors
being 1) ModelRoot, this model contains information about
nodes for computing such as compute nodes and instances.
2) StorageModelRoot, that model contains information about
pools and volumes for storage. 3) BareMetalModelRoot, this
model contains information about bare_metal nodes. Bare-
metal is when a physical machine is provided as a resource
without any virtualization layers. The term could be used
interchangeable with dedicated hosting although that it is more
commonly used when renting or leasing hardware and not
applied to cloud infrastructures.

2This overview is not up-to-date and some elements are missing. These
missing elements will be described later

When strategies are used to develop a new action plan this
is done by launching an audit. OpenStack operators can either
manually launch an audit or it can be scheduled based on
a timer running with a configured interval. Within Watcher
these types of audits are known as oneshot and continuous.
These audits are run entirely in the decision-engine executable
of Watcher and they are responsible for the first three steps
of MAPE-K. In the same manner the applier executable is
responsible for the last step in MAPE-K. When analyzing
other code constructs within Watcher it becomes clear that
these can also be mapped into MAPE-K.

Fig. 3: Code constructs within Watcher can be mapped unto
MAPE-K

The monitoring in MAPE-K is achieved with the data-
sources while the strategies provide the analysis. This in turn
generate actions to go into a plan so that, finally, the plan can
be executed. However, this leaves knowledge from MAPE-
K as these four parts only cover MAPE. This knowledge is
needed throughout the progression of the entire feedback loop
and is provided by the various data models and their cluster
collectors. Since new instances can be scheduled or deleted
during the operation of Watcher these models are required to
support being updated as soon as changes occur. To achieve
this these models are updated at specific intervals which can
be configured by users. More important, Watcher will update
by listening for update notifications from other OpenStack
components such as Nova.

1.5. Resource Optimization for CERN’s Cloud

Such a large cloud as the one at CERN sees problems
around resource optimizations in order to resolve this CERN
wants to deploy Watcher. Unfortunately Watcher is not mature
enough to be deployed and has many problems which must be
resolved before deploying it. Once Watcher is be deployed it
can be used in several ways that would reduce under utilization
and resource contention.

The oneshot audit modes allows to perform a one time
analysis using different strategies and results in an action plan
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which contains individual actions to be executed to achieve the
optimizations. When Watcher is initially deployed the oneshot
mode will be the most valuable as the individual actions can
also have a negative impact on end users. The oneshot mode
allows manual intervention which is needed to assure action
plans contain logical and safe decisions. When Watcher has
proven the ability to create safe and reliable action plans the
continuous audit mode can be considered. The continuous
audit mode allows to periodically perform audits which can
also be automatically executed if desired.

2. ASSIGNMENT

As described CERN aims to provide resource optimizations
for their private cloud by deploying Watcher. Before this can
be done problems with Watcher have to be identified, resolved
and the solutions evaluated. The goal of this internship is
to work with the upstream OpenStack community to develop
Watcher so it can be used in CERN’s private cloud.

For contributions to be valuable to the upstream community
they need to be developed in generalized way so they can
be used by other users. Proposed features and bug-fixes will
have to be discussed within the community and the final
result might differ from CERN’s ideal solution. This way of
developing adds to the overall complexity but makes it so that
the developed software can benefit many users instead of being
limited to internally at CERN.

Some initial tasks have already been established beforehand
but many more are likely to be identified. Some of these tasks
include developing a Grafana-proxy datasource and reducing
the scope of audits. Additionally some initial tasks might
require changes and be adapted after more careful analysis.
Not all tasks are an absolute requirement to be able to deploy
Watcher. This follows a typical software requirement paradigm
of must have, should have and nice to have requirements.

2.1. Research

Parts of the assignment is broken down into a main research
question and subquestions which are going to be covered in
detail later. Throughout this work the main research question
will be:

How can Watcher be improved to be successfully
deployed in CERN’s OpenStack Cloud?

In addition the subquestions are as follows:
• How can be collaborated with the upstream community

to develop Watcher?
• What prevents the deployment of Watcher in CERN’s

cloud?
• What possible solutions can be identified to be able to

deploy Watcher?
• What can be evaluated from the final implementations

developed to deploy Watcher?
The research methodology will be a combination of a

literature and experimental study but will primarily be experi-
mental as most of the research questions require performance
evaluations to be answered. Some improvements might regard

software patterns or design methodologies while others may
regard resolving compatibility problems. The relevant domain
knowledge to propose a solution will depend on the types of
improvements that are identified.

2.2. Structure

This work is divided into sections one for each possible
improvement of Watcher and each of these subquestions will
be structured similar to a small report. These sections will
describe the methodology used, results, evaluations and briefly
discuss them. Following the sections the combined results will
be used to answer the main question and to draw a conclusion
to finalize with a discussion. However, the first two sections
will be different and are used as a method to introduce the
operation of the community and the methodology used to
identify Watcher’s potential improvements.

3. COLLABORATING WITH THE UPSTREAM COMMUNITY
TO DEVELOP WATCHER

All OpenStack components are community driven projects
that require contributors to discuss and collaborate using a
large variety of platforms in order to progress the develop-
ment of the components. To be able to join a community
their methods have to be understood and evaluated as the
methods of every community are different. In addition some
communities might have difficulties collaborating that could
be caused by a variety of different reasons. These difficulties
should be addressed and resolved in order to improve the way
the community is able to make progress.

3.1. Method

Having no prior knowledge to the governance and collabo-
ration methodologies surrounding OpenStack projects the first
step will be to gather an overview of all platforms containing
information or providing services to OpenStack. Some of these
are likely written specifically to Watcher while others are more
generalized. The information gathered needs to be sufficient to
answer a set of questions which are essential for collaborating
on an open source project.

• Where is the source code hosted?
• Where are bugs tracked and reported?
• How are patched submitted and reviewed?
• How is a development environment configured?
• How are discussions held and is an agenda managed?
• How are development priorities maintained?
These questions were determined by past experience and

intuition from work on previous open source projects or from
other large open source projects such as Linux [13]. The
information the questions are set to answer cover the most
important aspects of a healthy open source project.

With all the relevant information gathered the current pro-
cedures of the Watcher project can be analyzed. The analysis
should be thorough enough to identify any problems that might
put the operation of a healthy open source project at risk.
Typical indications of these problems could be. 1) Disputes
between contributors not being resolved. 2) Inconsistencies
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in agreements such as meeting schedules and contributor
guidelines. 3) Project deviations from central governance.

The analysis will result in a list of improvement points
that will be attempted to be implemented to benefit the
overall maturity of the Watcher project. The possible solutions
to implement the improvements as well as their potential
benefits and drawbacks and finally the implemented solution
are described in the results.

3.2. Results

All the information was collected from a large set of online
resources which has been made available in the appendix VI.
During the period between February and August of 2019 some
of the platforms used by OpenStack were migrated. These
platforms include where source code was hosted and where
patched are submitted and reviewed. Another migration took
place during this period but it was started before February
and not finished by the end of August. While one migration
happened eventually overnight the other is taking more than
six months to complete. The reasoning for this is arguably
that one requires intervention from the contributors while the
other is performed by a body from the OpenStack foundation.
To simplify the results only the current platforms will be used
but an overview of all migrations and their status is provided
so the original platforms can be determined:

TABLE I: Platform migrations

Original platform New platform Status

git.openstack.org opendev.org complete
review.openstack.org review.opendev.org complete
launchpad.net storyboard.openstack.org ongoing

List of platform migrations and their status.

The source code for watcher is hosted on opendev.org and
this repository is mirrored to github.com. Mirroring is a very
typical practice for healthy open source projects. In addition
review.opendev.org is used as patch & review system and also
contains a mirror of the repository. The review.opendev.org
patch & review system is based on gerrit [14] which is
a relatively unknown but is based on several well known
platform [15]. In addition to having platforms for source
code and patches. Watcher tracks bugs on Launchpad [16]
which is a platform maintained by Canonical primarily known
for the Linux distribution Ubuntu [17]. The documentation
for Watcher is hosted on MediaWiki hosted by OpenStack
and contains the information on how to setup a development
environment. Similarly, the meeting agenda is hosted on
MediaWiki [18] and describes the used platforms with the
relevant setup procedure. Overall the available platforms and
how they are configured is proper and there are no concrete
identifiable problems with their configuration.

When analyzing how these platforms are used by contrib-
utors of Watcher several problems become clear. The most
prominent problem is that although a platform to organize

TABLE II: Platforms used by Watcher

Platform Purpose

opendev.org Hosting of source code
launchpad.org/Watcher Bug tracker
review.opendev.org Patch and review system
wiki.openstack.org/wiki/Watcher Watcher specific documentation
docs.openstack.org/watcher/latest/ Watcher specific documentation
wiki.openstack.org/wiki/Watcher_Meeting_Agenda Watcher meeting agenda
docs.openstack.org/releasenotes/watcher/ Release notes
specs.openstack.org/openstack/watcher-specs/ Feature specifications & priorities

List of platform and their purpose as used by Watcher.

meetings and maintain an agenda is available for all Open-
Stack components. Watcher has not organized meetings since
December 2018 and several meetings before December seem
to have very limited content [19], [20]. Other problems include
that the members of the launchpad core drivers team [21] do
not reflect the current developers and that the current set of
core reviewers does not reflect active contributors.

3.2.1. Meetings: Resolving the collaborative problems
around meetings was the most important issue to be addressed.
To be in a position to suggest the community to organize
meetings the community had to be familiar with the person
making the suggestion. A typical method to become familiar
with the community is by solving bugs or discovering them.
To do this the bug tracker was used to identify open issues
that could easily be solved by a new community member that
had no prior experience in both Python or Watcher.

The first issue was resolved by solving a division by zero
error in a method that computes the standard deviation of cpu
usage from a list of nodes 3. The original method did not
account for the list being empty while it the standard deviation
should always be zero if there are no elements to compute it
over.

def get_sd(self, hosts, meter_name):

"""Get standard deviation among hosts by \
specified meter"""

mean = 0

variation = 0

num_hosts = len(hosts)

if num_hosts == 0:

return 0

for host_id in hosts:

mean += hosts[host_id][meter_name]

mean /= num_hosts

for host_id in hosts:

variation += (hosts[host_id][meter_name] − \
mean) ** 2

variation /= num_hosts

sd = math.sqrt(variation)

return sd

The platforms for patching & reviewing can be used to
determine the email addresses of contributors. These addresses
are used to declare the intend for new features to be devel-

3nodes are also called compute nodes or hosts and these names are used
to identify hypervisors containing virtual machines
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oped for Watcher during the internship. These initial contacts
provides insight in the contributors that are still helping
developing Watcher and allowed to identify contributors that
are now invested in other projects.

The insights in current contributors was used to suggest
a new bi-weekly meeting format using similar channels and
times as the previous meetings. This suggestion was sent on
the 22nd of March 2019 for which the content is available in
the appendix 12.

The reception of this suggestion was overly positive and
the first new meeting was scheduled for the 10th of April
2019. These changes in meeting schedule were reflected on
the documentation and communicated to the mailing lists of
the OpenStack community [22]–[24].

During the first meeting several important problems that
prevented Watcher from being deployed at CERN were dis-
cussed [25], [26]. Addressing these issues allowed for the
development of the solutions some of which were done by
other contributor. When developing open source projects it is
important to understand that some features or improvements
set out to be developed at CERN are developed by other
contributors of Watcher. This is due to them observing the
same issues and being similarly inclined in solving these. It
would be rude or impolite to ask to not work on this features
as a means to allow for better demonstration of skills and
methodologies in a thesis. These issues and their appropriate
details will be discussed in later sections.

3.2.2. Core Reviewer: To organize the review process
among other things most projects have a set of reviewers
called core reviewers [27]. These core reviewers are given
additional privileges to better orchestrate the collaborative
progress contributors are able to make. The amount of core
reviewers a project has varies but typically new reviewers are
appointed by the project team lead(PTL). The primary role
of core reviewers is to analyze incoming patches and provide
feedback. This feedback can range in topic being related to
grammar and formatting but also regards design methodologies
and project scope.

The review process is done by up or down voting a patch.
Both the up an down vote should come with a general message
about why this decision was made. In the case of down voting
the lines of code that led to the decision will typically be
marked with an additional message. The difference between a
normal review and those of core reviewers is that they have
the ability to vote with -2 or +2 instead of -1 or +1. Depending
on the project this might have different effects but in general
a patch with -2 can never merge. Most projects require two
+2 votes in order to be merged. However, the Watcher project
only requires one +2 vote for the patch to merge.

Maintenance of the set of core reviewers on a project is
a process that must be executed manually and is typically
done by the PTL. The Watcher project has a large set of
core reviewers for the given amount of contributors. Many of
the core reviewers are inactive and have not reviewed patches
in a long time. Eventually inactive core reviewers should be
removed to better reflect the current set of contributors but

it was more important to elect current contributors as core
reviewers.

During the first Watcher meeting using the new schedule
both myself and Chenker [28] were nominated as core re-
viewers by the current PTL Licanwei [29]. This privilege
allows for better steering of the development efforts but comes
with responsibilities and must not be taken lightly. In another
meeting the large amount of inactive core reviewers was
addressed. As a result the new policy would be to remove any
core reviewer which is inactive for a one year period. This
policy is best fitted because any attempts to contact inactive
core reviewers was often met with no response.

3.2.3. Watcher Drivers Team: In Launchpad projects are
setup in such a way that they can be managed by individuals
or teams. These teams can have members with different roles
to orchestrate working together on a project. Members that
manage projects can edit the status of blueprints or update
issues for example. Since OpenStack components in some
cases use Launchpad it is important that the team contains
currently active developers.

As stated before, Launchpad is a bug tracker developed by
Canonical as primary functionality but it has other capabilities
as well. For instance, Launchpad can manage blueprints which
track new features that are being developed for projects. In
addition, Launchpad can be used as a repository for Debian
based packages [30].

The Watcher project contains 36 members of which one
is an active contributor, and furthermore, out of the three
administrators none are active contributors. This is a potential
problem since it limits the amount of contributors that can
manage the project and could potentially lead to having no
active contributors able to manage the project at all.

The current members of the Watcher Drivers team were
contacted to resolve the issue on the 13th of June 2019
and it was resolved on the same day. Jean-Émile Dartois
who is a previous contributor to Watcher responded to the
correspondence and made the current PTL (Licanwei) an
administrator. The correspondence is available in the appendix
12.

It was decided to now remove any inactive members from
the Watcher Drivers team, however, the regain of control
allowed to add new members to the team. As a result the
new members could now manage blueprints and bug reports.

3.3. Discussion

The Watcher community embraced the suggestions to im-
prove communication and collaboration efforts. Overall the
community collaborates together in a mature and professional
fashion despite the small size of the team. Furthermore, the
community has shown to be welcoming to new contributors
and provides good feedback about issues and patches. Of
course in any community there are always ways to improve but
especially considering the size Watcher’s contributors should
be proud of how they are operating.

It might be challenging to continue this momentum after
the finalization of this internship and thesis so the community
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should invest in attempting to maintain it4. To achieve this it
could make attempts to attract new contributors by creating
demo’s for example. Finally, this thesis itself could be shared
with the community using the mailing list and this could
potentially attract new contributors.

4. WHAT PREVENTS THE DEPLOYMENT OF WATCHER IN
CERN’S CLOUD?

The first step in implementing improvements required to
deploy Watcher is to identify them. This sections describes the
method used to identify these improvements including other
discoveries about Watcher.

4.1. Method
Initially there was very limited domain knowledge about

the operation of Watcher and the structure of the source
code. To identify problems this domain knowledge would need
to be improved as well as knowledge on how Watcher is
written. In addition, the available experience with the Python
programming language and the tools available to it was also
very limited and would need to be improved.

Since OpenStack is a large scale collection of open source
projects it is very likely that a large amount of documentation
is available for new contributors. This documentation will be
analyzed to better understand the use of Python programming
tools used by OpenStack and how components are structured.
Documentation that needs to be found includes how to debug
the programs and setup a development environment but also
how to write and submit patches.

The available documentation should allow to setup a devel-
opment environment which will be used to explore the way
Watcher operates. The exploration of how Watcher operates
could already help identifying problems but the main purpose
is understanding how Watcher works internally.

With a working development environment available the
source code will be analyzed. This analysis will be used with
the predetermined tasks in mind to get initial ideas on how to
perform these tasks. In addition, the analysis is used to further
identify any additional improvements as well as gain further
knowledge on how Watcher works internally.

In short the methodology to identify the improvements that
are required before Watcher can be deployed.

• Gather existing documentation
• Configure test environment
• Explore Watcher’s operation
• Analyze source code

4.2. Results
To gather documentation many of the sources that were

identified during the work on collaborating with the upstream
community could be used. In reality these tasks were executed
largely in parallel of each other. However, the relevance of
certain platforms differs significantly between these tasks. The
most valuable sources of documentation are highlighted in
table III.

4I do intend to keep collaborating on Watcher but my future courses can
seriously limit the amount of time available.

TABLE III: Valuable OpenStack documentation

Source Content

docs.openstack.org/contributors/ Contributor guide
docs.openstack.org/watcher/latest/contributor/devstack.html Test environment
docs.openstack.org/watcher/latest/architecture.html Watcher architecture

List of documentation sources relevant for identifying improvements.

The analysis of the documentation did not help identify any
possible improvements, however, some necessary improve-
ments were already described in the initial assignment. These
improvements will be detailed in later sections.

4.2.1. Configure Test Environment: Setting up a test envi-
ronment was a significant hurdle but one that is well known
within the community as being challenging. In the documen-
tation OpenStack describes different type of test environments
and calls these environments devstack [31]. The most impor-
tant difference between these types of environments is single-
node and multi-node. In single-node devstack environments
all configured components run on a single host. Naturally, in
a multi-node devstack environment multi hosts are used to
run all configured components and the hosts typically com-
municate over the network. Multi-node devstack environments
can have many possible configurations in terms of which
components are installed and the total amount of hosts. For
clearness any multi-node devstack environments will be called
teststack throughout this document.f

The flexible configuration devstack is able to provide is
achieved using a configuration file known as local.conf. It is
capable of making a selection of components to install which
are known within the devstack configuration as plugins [32].
Furthermore, it allows to modify configuration for every com-
ponent. Finally, devstack allows to select specific branches,
commits or releases of components from any arbitrary git url
in order for them to be installed.

The local.conf configuration used throughout this work is
shown below.

[[ local|localrc]]
enable_plugin watcher https://opendev.org/openstack\

/watcher

enable_plugin watcher−dashboard https://opendev.org\
/openstack/watcher−dashboard

enable_plugin ceilometer https://opendev.org/\

openstack/ceilometer.git

CEILOMETER_BACKEND=gnocchi

enable_plugin aodh https://opendev.org/openstack/\

aodh

enable_plugin panko https://opendev.org/openstack/\

panko

[[post−config|$NOVA_CONF]]
[DEFAULT]

compute_monitors=cpu.virt_driver
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The configuration installs a total of five plugins in addition
to the default plugins. These default plugins are installed
by devstack unless otherwise specified. The most important
plugin is the watcher plugin which will install the Watcher
component and is followed by the watcher-dashboard. Dash-
board plugins are additions to the web interface OpenStack can
offer which is called Horizon [33]. By installing a dashboard
plugin the functionality offered by that component can then be
used from the Horizon web interface. The next plugin is called
Ceilometer and it is one of the three datasources Watcher
supported before any development effort mentioned in this
work. As mentioned before, Ceilometer is being deprecated as
datasource. This is because Ceilometer used to be a complete
solution for measuring, aggregating and storing metrics but the
storage backend has since changed. The new storage backend
is called Gnocchi and this is how the datasource is internally
named in Watcher even thought the actual metering of metrics
is still done by Ceilometer. By setting CEILOMETER_BACKEND\

=gnocchi the use of gnocchi as backend is ensured although
this will likely become the default in a future release. The
two final plugins aodh and panko are less relevant but their
installation ensures the availability of certain metrics when
using the Gnocchi datasource, however, it is likely that the
availability of these metrics can be achieved as well by setting
certain parameters in Ceilometer configuration files. Such a
configuration change to enable additional metrics is also used
in Nova’s configuration compute_monitors=cpu.virt_driver.
This configuration parameter enables the collecting of met-
rics from compute nodes (hypervisors) since by default only
instances(virtual machines) are available.

The complete test environment running both Watcher and a
supported datasource allows to test the operation of Watcher.
The running test environment is used to explore how Watcher
operates. This exploration step is done largely in parallel with
the source code analysis. Since performing operations while
analyzing how these operations are achieved in the source code
is a very powerful method. This method will allow to quickly
understand a program such as Watcher.This methodology has
led to the discovery of several problems which must be
resolved before Watcher can be deployed. These problems can
be categorized into issues that must be resolved and issues
that have benefits if resolved. Typically within the software
development industries non essential features are called nice to
have. This terminology of must have and nice to have is used
throughout this document. Issues in both groups are ordered
according to the time they were discovered starting with the
problems that were discovered first.

4.3. Discussion

The operational and source code analyses were used to
detail Watcher’s architecture as shown in section 1.4. The
architecture is a crucial section of the results but is only
included in the introduction. This is done to have a better
flow and improve readability throughout this work.

5. GRAFANA DATASOURCE

As described before Watcher supports multiple datasources
to retrieve metrics. While all current datasources are based
on other OpenStack components at CERN none of these are
actually used. This introduces the largest problem that prevents
Watcher to be deployed in CERN’s cloud since Watcher can
not operate without a datasource to provide metrics.

At CERN multiple methods are used to gather metrics for
monitoring and alarms. The most common method is to use
the Collectd [34] service with various plugins on the compute
nodes and have them stored in InfluxDB [35] or ElasticSearch
[36]. These databases they can be accessed by a variety of
tools but Grafana is used the most commonly used.

This additional datasource for Watcher was part of the
original assignment and the necessity for this was known in
advance of the operational & source code analysis. Because of
this an alternative was not really discussed within CERN but
some alternatives will be detailed as well as their benefits and
drawbacks for completeness. This alternatives will primarily
be based around different architectural solutions to realize this
datasource.

Fig. 4: Overview of services involved in Grafana datasource
mapped unto MAPE-K.

When introducing these new services into the overview
of MAPE-K their purpose is further clarified. Collectd is
responsible for operating as sensors and will send this data
to InfluxDB which operates as persistent time-series database.
This database is read by Grafana which will operate as
monitoring solution as a result Watcher can analyze, plan and
execute. This execution is performed by communicating with
Nova which is the effector.

Before the Grafana datasource could be designed several
changes needed to be made to the interface between data-
sources and strategies. These changes are described in detail
individually in section 6. The proposed solutions are based on
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how they have to be implemented after the required changes
to the interface.

5.1. Configuration Flexibility

The solution for the Grafana datasource will have to allow
for a large amount of flexibility in the configuration. This flex-
ibility is necessary because their is no intermediate language
or interface between Grafana and the databases it supports. As
a result the function5 required to retrieve metrics will depend
on the database that is used. Furthermore, the type of database
could be different depending on the metric or even use entirely
different attributes to identify compute nodes.

Take the following database structures to emphasize this
configuration complexity:

[

{

"type": "cpu_count",

"host": "hostname.cern.ch",

"value": "13"

}

]

...

[

{

"type": "cpu_cycles",

"uuid": "796eef99−65dd−4622−acca−fd2a1143faa6",
"value": "24"

}

]

This example shows two possible structural differences in
the same type of database being InfluxDB. Nevertheless, both
databases identify compute nodes using different attributes
were one is using hostname and the other Universally Unique
IDentifier (UUID). In addition the type identifier used is
different while these flexibility requirements only become
larger when different databases are used.

The desire to support this large amount flexibility might
not be immediately apparent since it would be easier to fit
it for the precise databases of CERN. However, the Watcher
project is an open source collaboration so this flexibility is
required to make it usable for other organizations as well.
As an alternative the datasource could be developed in so
called downstream / out-of-tree. This would mean that the
code for this functionality is not submitted to the repository
of the community. The downside of developing downstream
functionality is that the community will not take it into account
when creating new changes. As a result the communities
development efforts might break the downstream functionality
unexpectedly. Because of this downstream functionality is
generally harder to maintain when working on open source
projects.

5Throughout this work, function will be used to refer to a defined function /
method in a programming language. When addressing a collection of functions
generally method or methodology will be used.

CERN already contributes to many open source projects
so it would better fit their nature to do so for the Grafana
datasource as well. Combined with that the new datasource
could benefit other OpenStack users and it would be easier
to maintain. It is clear that the only logical conclusion is to
develop a flexible upstream Grafana datasource.

To develop a flexible datasource a total of five configuration
parameters need to be definable per metric. These are in
addition to three parameters that only require one definition
for all metrics. The following list is an overview of these five
per metric parameters:

• project
• database
• translator
• attribute
• query

Because of the terminology used by Grafana and Watcher a
lot of these terms conflict between one and the other. Up until
now the definition used to describe databases was for the types
of databases engines themselves such as InfluxDB. However,
when using the Grafana API to talk to these engines this is
done using a project id. For this reason the project parameter is
used to refer to a specific instance of an database engine. These
database engines support storing multiple databases at once.
The database parameter is used to specify which database to
select from within the database engine instance (project). Inter-
facing with Grafana is done through a REpresentational State
Transfer (REST) API as a result many of the configuration
parameters are put into the url:

.../{PROJECT}/query?db={DATABASE}&q={QUERY}

The two parameters that are not part of the url will be
explained later. First, the configuration parameters that only
have to be defined once are explained. These include 1) base
url 2) authentication token 3) datasources 4) metric file. The
base url is used to define the location of the endpoint to
which requests should be made. This includes aspects such as
the scheme and the path, although insecure scheme requests
will be blocked. The terminology regarding url’s is based on
the Request For Comments (RFC) defined by Berners-Lee,
Masinter and McCahill [37].

https://{BASE URL}/api/datasources/query/...

Contrary to many other parameters the authentication token
is placed in the header of an HyperText Transfer Protocol
(HTTP) request. This type of authentication token is known as
a bearer token [38]. Although officially part of OAUTH2 [39]
it is used in many other systems as a method for authentication.
As an example, the entire header will look similar to the
following:

Authorization: Bearer deadbeef=

accept−encoding: gzip, deflate
Connection: keep−alive
Accept: application/json
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The other parameters are part of other developments that
were made in parallel with the Grafana datasource. The
datasources parameter allows to specify which datasources can
be used and the preferred order. Additionally, the metric file
parameter allows to specify the path to a YAML Ain’t Markup
Language [40] (YAML) file. This special type of configuration
file is used to configure the available metrics per datasource.
The benefits from such a YAML file are primarily improved
readability.

The two remaining query and translator parameters are used
to allow the Grafana datasource to work with different types of
database engines (projects). Specific types of translators will
be made one for each type of database. These translators will
handle how to extract data from the result, how to construct
requests and unit conversion. Finally, the query parameter
is used to make the request with a syntax the database
understands. With MySQL such a query could look like:

SELECT cpu_usage FROM cpu_metrics WHERE host LIKE \

example AND time > now()−300s;

With these parameters it becomes clearer how exactly the
Grafana datasource will be implemented. However, before
going in to details alternatives to this implementation will be
discussed. This is done because the solutions differ primarily
on configuration parameters.

5.2. Alternative Solutions

In terms of alternative solutions for the Grafana datasource
only one is clearly viable. This solution resolves around the
underlying databases Grafana interfaces with. Since Grafana
only offers a proxy to interface with these database it might
be viable to interface with them directly. This would result in
not a single datasource being developed but one for each type
of database. The advantage would be that Grafana is no longer
required for any infrastructure to be able to use these types of
datasources. However, authentication, endpoints, queries and
more will all have to be managed on a per database basis.

Ideally the solution would be able to use both Grafana and
individual databases, however, due to time constraints this
solution was not considered. The additional complexity would
require a larger amount of effort but might be feasible in the
future.

5.3. Implemented Solution

The implemented solution used the configuration parameters
as described before, as a result the flexibility allows it to be
used in any deployment. Because of this high flexibility it
has since been merged into the upstream repository [41]. The
implemented Grafana works by combining all the parameters
together and make a request. The general process is enhanced
by performing several validations as well as providing mean-
ingful error messages.

The validation is done by iterating over all the configuration
parameters and attempting to build a metric map. This map
contains the names of all metrics and the values of parameters

that go with them. Any not fully configured metric due to miss-
ing or invalid parameters will not be added. This validation of
parameters is complicated by the YAML configuration source
that was developed in parallel with Grafana. The Grafana
datasource would have to be able to validate both sources
while not raising warnings if only one is configured. In
addition, a decision should be made if the YAML file overrides
the normal configuration file or the other way around. Since
the default configuration is contained in the traditional file it
would require significant user intent to configure the YAML
file. Because of this the YAML will override settings from the
default configuration. The function to construct the Grafana
metric map at runtime is shown in figure 5. This function only
covers the handling of per metric parameters but this should
be sufficient in demonstrating. Since the other validation is
fairly basic such as verifying the parts of an url for instance.

def _build_metric_map(self):

"""Builds the metric map by reading config"""

for key, value in CONF.graf.databases.items():

try:

project = CONF.graf.projects[key]

attribute = CONF.graf.attributes[key]

translator = CONF.graf.translators[key]

query = CONF.graf.queries[key]

if project is not None and \

value is not None and \

translator in TRANSLATOR_LIST and \

query is not None:

self.METRIC_MAP[key] = {

’db’: value,

’project’: project,

’attribute’: attribute ,

’translator’: translator ,

’query’: query

}

except KeyError as e:

LOG.error(e)

Fig. 5: Runtime construction of the Grafana metric map

Traditionally the metrics available for any given datasource
are known before runtime of the program. With Grafana,
however, this will no longer be true. Due to the availability of
metrics being different among infrastructures the configuration
will now determine which metrics are available. Clearly, this
metric map can only be constructed at runtime. In Watcher the
DataSourceManager ensures the construction of these metric
maps, furthermore, it ensures the best fitting datasource is
chosen given the current audit. This decision is based on the
metrics that are required for any given strategy to run. Every
strategy defines a set of metrics it will need to operate, so that
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upon the run of an audit the DataSourceManager can select a
datasource that supports them. Several changes were needed to
allow the DataSourceManager to work correctly with Grafana.
In the following example code this behavior of dynamically
constructing the map is shown:

metric_map = OrderedDict([

(Gnocchi.NAME, Gnocchi.METRIC_MAP),

(Ceilometer.NAME, Ceilometer.METRIC_MAP),

(Monasca.NAME, Monasca.METRIC_MAP),

(Grafana.NAME, Grafana.METRIC_MAP),

])

def __init__(self, config=None, osc=None):

...

self.metric_map[Grafana.NAME] = self.grafana.\

METRIC_MAP

map_path = CONF.watcher_decision_engine.\

map_path

metrics_file = self.load_metric_map(map_path)

for ds, mp in self.metric_map.items():

try:

self.metric_map[ds].update(metrics_file\

.get(ds, {}))

except KeyError:

msgargs = (ds, self.metric_map.keys())

LOG.warning(’Invalid Datasource: %s. \

Allowed: %s ’, *msgargs)

self.datasources = self.config.datasources

Fig. 6: DataSourceManager constructor to dynamically create
Grafana metric map while allowing YAML configuration to
override it.

In figure 6 the construction of an OrderedDict can be
observed. This special dictionary type ensures a specific order
of datasources can be assumed as the default preferential order.
This is due to how the standard dictionary in Python works.
In these dictionaries no order can be assumed as a result any
inserted element could end up at any location in the dictionary.
Additionally, the copying of the runtime Grafana metric map
into the DataSourceManager as well the processing of YAML
configuration are shown.

Since the majority of CERN’s metrics are stored in In-
fluxDB databases, naturally , the first translator to be devel-
oped for the Grafana datasource is for InfluxDB. The method
for combining the parameters, creating requests and extracting
results will be detailed using InfluxDB as example. When the
function to retrieve a metric is called firstly the existence of
this metric in the map is checked. This is done because a
strategy can declare the necessity for a set of metrics but

nothing limits it from requesting a not declared metric. After
this check all data from the parameters is copied into a
predefined datastructure for the translators to use. This data
is passed along while constructing the translator, additionally,
the base class of the translators performs basic validation.
The translator is called to construct the parameters for the
HTTP request using a function inherited from the base class.
The actual request, the error handling and recovery around it
remains responsibility of the Grafana datasource itself. Finally,
the translator uses the result from the request to extract and
possibly convert it so that it can be returned to the strategy.
The majority of this behavior is demonstrated in figure 7.

...

data = self._build_translator_schema(

meter_name , db, attribute , query,

resource , resource_type , period,

aggregate , granularity)

translator = self._get_translator(trans_name , data)

params = translator.build_params()

r_args = dict(

params=params,

project_id=project,

)

args = {k: v for k, v in r_args.items() if k and v}

resp = self.query_retry(self._request, **args)
result = translator.extract_result(resp.content)

return result

Fig. 7: Demonstration of how database specific operations are
abstracted into translators.

With InfluxDB some aspects of the schema have to be
converted to make a valid query. This is due to how InfluxDB
optimizes the time series database. In these databases the
retention period for retrieved data can be defined. As a result a
query with a long period might not be able to retrieve all his-
torical data if the retention period is not adjusted accordingly
[42]. The available retention periods depend on the InfluxDB
instance and therefor, they are configurable parameters in
Watcher. These retention periods are then exposed to the query
so that they can be used. Other parts of the schema need to
have data extracted instead of converted. This is necessary for
the resource object that is part of the data schema as shown
in figure 7.

These resource objects are part of the data model that is
build when an audit is launched. To demonstrate how the
attribute parameters works an example of this resource object
is shown in figure 8. In reality there are several types of
resource objects and the types can depend on the strategy or
the data model cluster collector. Furthermore, many of these
resource object types share some attributes.
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service = node.service

node_attributes = {

"id": node.id,

"uuid": service["host"],

"hostname": node.hypervisor_hostname ,

"memory": node.memory_mb ,

"disk": node.free_disk_gb ,

"disk_capacity": node.local_gb,

"vcpus": node.vcpus,

"state": node.state,

"status": node.status,

"dis_reason": service["disabled_reason"]}

Fig. 8: How the resource object for compute nodes are
constructed.

Using the value from the attribute configuration parameter
one of these fields from the resource object can be extracted.
This is done using a special function in Python called:
getattr(object, attribute_name).
With all these attributes ready they can now be exposed

to the query. The exposing of these attributes is done in a
comparable manner to how Structured Query Language (SQL)
prepared statements [43] work. The configuration allows to
define a string with special markers while each of these
markers will be replaced with an attribute. This functionality
is achieved using Python’s builtin string function format().
Take the following unformatted query as shown in figure 9.
Any of the numbered brackets such as {0} and {1}. Which of
these numbered brackets will be replaced with what attribute
is thoroughly documented [44].

SELECT 100−{0}("{0}_value") FROM {3}.cpu_percent
WHERE ("host" =~ /^{1}$/ AND "type_instance"

=~/^idle$/ AND time > now()−{2}s)

Fig. 9: Unformatted InfluxDB query example.

Currently, there are five exposed attributes for each query.
These attributes are named from zero to four. Each of these
represents • {0}, represents the aggregate such as mean or
min, • {1}, is the value as extracted from the resource object
based on the specified attribute. • {2}, is the period in seconds
over which data should be aggregated. • {3}, is the granularity
between data points over which should be aggregated. • {4},
is translator specific which in the case of InfluxDB will be the
retention periods.

The following will demonstrate how the final query for
InfluxDB would look taking the example raw query from
figure 9. The placement of all these exposed attributes can
now be observed in figure 10. Looking at the structure of

these formatted queries it might seem intimidating to create
these. However, tools such as postman [45] exist to develop
interactions with REST API’s. The recommendation to use
such tools is also emphasized by the online documentation
[44].

SELECT 100−mean("mean_value") FROM one_week.
cpu_percent WHERE ("host" =~ /^examplehost\

.cern\.ch$/ AND "type_instance"=~/^idle$/ AND

time > (now()−120s))

Fig. 10: Formatted InfluxDB query example.

With the complexity of all these attributes being combined
into queries for use on different types of databases, naturally,
a thorough guide is necessary to help users configure the
Grafana datasource. Similarly to this work explaining the
available parameters, attributes and how they are converted in
the query. The online documentation covers all these aspects
with similar examples to demonstrate how it is put all together.

With all the configuration in place, the query ready and
the request made the final part of the operation is to extract
the result. Once more, the precise method of extraction is
based on the type of database in Grafana. In the case of
InfluxDB a JSON structure will be returned. However, since
JSON structures are not strictly defined expected structures are
part of the documentation as well. The result shown in figure
11 is an response from the query as shown in figure 10.

{"results": [{

"statement_id": 0,

"series": [{

"name": "cpu_percent",

"columns": [

"time",

"mean"

],

"values": [[

1563791841338,

6.188323840776562

]]

}]

}]}

Fig. 11: InfluxDB response when querying with aggregate.

In the case of these aggregated InfluxDB queries it is clear
that the value from the column with the name of the type of
aggregate should be selected. In the response from figure 11
this would be 6.18832.... The documentation of the formats
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expected from a response are critical as without an aggregate
they would look similar to figure 12.

{"results": [{

"statement_id": 0,

"series": [{

"name": "cpu_percent",

"tags": {

"host": "examplehost.cern.ch"

},

"columns": [

"time",

"mean_value"

],

"values": [

[

1563781649000,

2

],

[

1563781769000,

1

],

[

1563781829000,

1

],

...

Fig. 12: InfluxDB response when querying without aggregate.

The extraction of the results becomes significantly more
complicated when the aggregation of data needs to be handled
by the Grafana datasource. It should be noted that for other
types of databases this might be required if the database is
not capable of aggregating data itself. With InfluxDB the
aggregation requires fairly minimal additions to the query,
additionally, since InfluxDB is a time series database it should
be efficient at performing mathematic operations over periods
of time.

The queries for InfluxDB need to be aggregated to have
their results extracted since this a minimal change to the
query. The actual extraction itself is done with minimal Python
code as shown in figure 13. This example only highlights the
necessary for extraction. Other parts such as error handling or
documentation are omitted6.

6The same applies to any other code example but in this case the amount
of omitted code is very substantial.

def extract_result(self, raw_results):

try:

rslt = jsonutils.loads(raw_results)

rslt = rslt[’results’][0][’series’][0]

aggregate = rslt[’columns’].index(

_data[’aggregate’])

return rslt[’values’][0][aggregate]

except KeyError:

...

Fig. 13: Extracting result from InfluxDB response.

After the extraction by the translator the result is returned
to Grafana which in turns returns it to the running strategy.
The overall operation of the Grafana datasource might seem
complex but this additionally complexity allows for extensive
flexibility. In addition, this complexity will reduce the develop-
ment effort required for any additional database type supported
by Grafana. Considering both the upstream community and
CERN’s desires for such a datasource this given architecture
will provide a solid foundation for any further improvements.

5.4. Discussion

While overall the Grafana datasource architecture should
be a solid foundation. There were several issues which were
not addressed mainly due to time constraints. As part of the
discussion all these possible improvements will be briefly
detailed.

As mentioned before ideally translators should be data-
sources by themselves. This could be achieved by inheriting
both base classes from the translators and the datasource.
Python supports the concept of multiple inheritance similar to
how C++ supports it. Multiple base classes can be inherited
by specifying them in comma separated fashion:
class Example(BaseClassOne, BaseClassTwo):

Alternatively, both could be developed separately but it is
likely that if they would be developed into one class a lot of
code could be shared across functions.

Even though effort was put into correctly managing both
sources of configuration there still remains a small issue when
configuring using YAML. Due to the logging functionality
when first constructing the metric map an error will be logged
that no metrics are available. However, it does not affect the
functionality of the Grafana datasource. A bug report was
opened on Launchpad to ensure this issue will not be forgotten
[46]. Potentially, future CERN personal to continue the work
on Watcher could take this as an issue to get familiar with
OpenStack and Watcher.

As final improvements the exposed query parameters could
use names instead of numbers which make the raw queries
more readable. To achieve this a small wrapper around the
format() call could be made that would replace all occurrences
of any names back into their corresponding numbers. Using
builtin Python string functions to achieve this should allow
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to implement this with relatively little effort. As an example
figure 14 shows how this would improve the readability of raw
queries.

SELECT 100−{aggregate}("{aggregate}_value") FROM
{retention_period}.cpu_percent WHERE ("host"

=~ /^{attribute}$/ AND "type_instance" =~/^idle$/

AND time > now()−{period}s)

Fig. 14: Example of how improved queries could look like.

6. STANDARDIZED DATASOURCE INTERFACE

As mentioned Watcher supports multiple datasources, how-
ever, support for these datasources was added one after the
other. Initially there was only a single datasource. Overtime
with the introduction of more datasource the need for a base
class became clear. Such a base class will allow to standardize
behavior and interface across datasources. This base class was
already implement in Watcher before the analysis but during
the source code analysis problems with the implementation of
this base class became apparent.

There were multiple datasources when the base class was
developed but these datasources both were developed in dif-
ferent ways. To make the base class compatible with both
datasources the base class was designed to support both
designs of the different datasources. Unfortunately this leads
to the strategies being able to work with both methodologies
of the datasources as a result strategies still only work with
some types of datasources even though the datasources are
developed using a base class. An example of these multiple
methodologies is shown in figure 15. Imagine two different
strategies one calling the function without the dimensions
parameter supplied while the other does not supply the id
parameter. Depending on the current datasource being used
this might raise an error terminating the execution of the
strategy. This situation occurs in multiple strategies because
they were created before the datasource base class.

class MonascaHelper(base.DataSourceBase):

def statistic_aggregation(self, id, dimension):

"""
:param id : unused
:param dimension: dimension( dict )
. . .
"""
...

class GnocchiHelper(base.DataSourceBase):

def statistic_aggregation(self, id, dimension):

"""
:param id : id of resource
:param dimension: unused
. . .
"""
...

Fig. 15: Highlight of one of the interface problems introduced
due to supporting multiple methodologies in the datasources.

To resolve this issues the base class for the datasources
needs to be redesigned and all strategies need to be updated
to interface with the datasources using the new method. This
would be a significant change but a very important one. It
would allow all the strategies to work with each current and
any future datasource. The need for this new interface was
discovered during the development of the Grafana datasource.
Since a datasource that could only be used on very specific
strategies would have limited value. The need for this improve-
ment was discussed during the bi-weekly meeting were other
contributors also acknowledged the need for this improvement.

Like many other large features a specification was written
[47] to define the changes to be made. Naturally, the defining
of these changes was an iterative process. In addition, due to
the size of this change it took significant effort. To demonstrate
this effort the most important changes will be detailed as well
as their benefits.

6.1. Required Changes

In datasources metrics are identified using so called metric
maps. These dictionaries contain key value pairs to identify
what type of metrics are supported by any given datasource.
The key value identifies the type of metric while the value
identifies the internal name as recognized by the datasource.
Strategies would request metrics by specifying the values of
the metric they want, naturally these internal names could
differ per type of datasource. This would cause the strategy to
not work with certain datasources even though they support
the same type of metric. An example for these unnecessary
forms of incompatibility is shown in figure 16.
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class GnocchiHelper(base.DataSourceBase):

NAME = ’gnocchi’

METRIC_MAP = dict(

host_cpu_usage=’compute.node.cpu.percent’,

host_ram_usage=’hardware.memory.used’,

...

class MonascaHelper(base.DataSourceBase):

NAME = ’monasca’

METRIC_MAP = dict(

host_cpu_usage=’cpu.percent’,

host_ram_usage=’vm.memory.utilization’,

...

Fig. 16: Metric map key value discrepancy

To resolve these incompatibilities the keys of these dictio-
naries are now used as identifiers instead. The METRIC_MAP
is only used in one function but this function is responsible for
retrieving results. In the base class this function is known as
statistic_aggregation() which needed several changes during
the development of this new interface. The other changes to
this function were the removal of two parameters group_by
and dimensions. Any current datasource that used one or both
of these parameters was rewritten to no longer need them.
The removal of these parameters was possible due to necessary
information already being available in different parameters that
were unused by these specific datasources. Another change
to the parameters of this function was increasing the amount
of data passed about the resource to retrieve metrics from.
Instead of passing just the UUID an entire object with many
attributes of relevant information is passed. Typically, data-
sources would use the UUID to make additional API calls to
Nova to retrieve attributes like the hostname. These attributes
were previously collected during the building of the data
model so these calls could easily be prevented. In addition,
an resource_type parameter is added to indicate the type of
resource object being passed. This is because the data model
knows many different types of objects for instances, compute
nodes or volume pools, for instance. The resulting signature
of statistic_aggregation() is shown in figure 17.

def statistic_aggregation(

self, resource=None, resource_type=None,

meter_name=None, period=300, aggregate=’mean’,

granularity=300):

Fig. 17: Datasource signature of statistic_aggregation

The final change to parameters of statistic_aggregation()
limited the amount of possible some parameters are allowed to
have. Both the resource_type and aggregate parameters were
limited in this way. Before these changes the value mean
and avg where used arbitrarily by strategies for the aggregate
parameter. Because of this many datasources needed to check
the value of the aggregate parameter. Possibly replacing avg
with mean or the other way around. The new interface spec-
ification defines a set of allowed values that can be extended
if necessary. Now only a limited number of datasources needs
to replace the value of the aggregate parameter in some cases.
The set of allowed values is detailed below:
AGGREGATES = [’mean’, ’min’, ’max’, ’count’]

All expected data types for parameters and return types
have been documented extensively in the base class. This
should prevent a similar situation from occurring again, as well
as, reduce the complexity of developing new datasources. In
this documentation the data types and values for return types
are especially important. If these values were to be of the
incorrect unit when returned it would affect the operation of
the strategies. An example of these forms of documentation is
shown in figure 18.

def get_host_cpu_usage(

self, resource , period, aggregate ,

granularity=None):

"""Get the cpu usage for a host

: return : cpu usage as float ranging between
0 and 100 representing the total
cpu usage as percentage

"""
pass

Fig. 18: Defining of value and type for return type.

With the new interfaces completed some small additional
improvements were discovered. Since this improvements is
still related to the datasource interface it is included in this
section. As some of the datasources used a special function
to reattempt any requests that had failed. Especially in larger
infrastructures this is a very useful feature as failed requests
become more likely. Any consecutive requests after one fails
could still succeed depending on the error that caused it.
When the request fails for a configurable amount of times
consecutively an error is raised. This functionality was ab-
stracted from the datasources that support it into the base
class. Finally, the function was generalized while exposing
an abstract function to allow for recovery operations. The
operation of this functionality is demonstrated in figure 19. A
powerful feature in Python is the ability to pass a function
and subsequent arguments to this function as parameters.
The functionality uses the feature so that arbitrary functions
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can be wrapped for reattempting upon failure. Additionally,
the query_retry_reset() function allows to perform datasource
specific recovery operations upon failures.

def query_retry(self, f, *args, **kwargs):
...

for i in range(num_retries):

try:

return f(*args, **kwargs)
except Exception as e:

LOG.exception(e)

self.query_retry_reset(e)

...

time.sleep(timeout)

raise exception.DataSourceNotAvailable(

datasource=self.NAME)

Fig. 19: Function to recover after failure from external request.

6.2. Discussion

The completion of the improved datasource interface al-
lowed to continue the development of the Grafana datasource.
Possible one of the reasons the Grafana datasource was only
merged on the 12th of July was due complications like this.
The new interface allows all datasources including Grafana
to be used with any strategy given it provides the necessary
metrics. The correct operation of different datasource was
subsequently tested in both test and production environments.

Nevertheless, there are still possible improvements to be
made to the datasource interface. Such as the method used to
document return types and values. The Sphinx [48] tool used
to generate documentation using so called docstrings offers
extensive functionality. Currently a lot of these features are
not used because of the way the docstrings are written. It
would improve the generated documentation significantly if
the functionality of Sphinx was used properly. The resulting
documentation would more clearly indicate types or even
possible exceptions.

7. DATA MODEL SCOPE

As mentioned previously Watcher was designed around the
MAPE-K feedback loop which operates with a central body
of knowledge. In Watcher this knowledge is built into a data
model to store a representation of the infrastructure in memory.
However, while analyzing the source code it became apparent
that the way this data model was constructed needed to be
improved.

Watcher constructs its data model by retrieving all compute
nodes and instances in the entire infrastructure7 then it applies
a scope afterwards by removing any elements that do not
match specific filters. This method for constructing the data

7The retrieval of this information is limited to so called regions which are
the strongest form of isolation in OpenStack clouds.

model is very problematic for large scale clouds such as that of
CERN with over 9000 compute nodes and 33000 instances. In
these clouds the total time required to gather all information
will be extremely long. Furthermore, the load produced by
all these API requests will have significant impact on the
operation of the services. The requests might even completely
stop some services from functioning due to Out Of Memory
(OOM) exceptions for instance. An OOM exceptions occurs
when the program uses so much RAM that the host has
insufficient memory to continue execution of the program.
Typically the operating system will kill the program in order
to prevent the entire host and all its programs from freezing.

compute nodes and instances are typically divided into
groups called cells this allows to more easily manage the
infrastructure. Scheduled maintenance or decommissioning
can be organized on a per cell basis which makes it much
easier for everyone involved to identify the machines on which
actions are to be performed. Internally in OpenStack these
cells are known as aggregates while the OpenStack users are
provided availability zones. These availability zones map to
one or more aggregates. Consequently, these aggregates and
availability zones are the filters applied by the scope to remove
non matching elements from the data model.

These cells are an important construct since it is desirable
to limit the scope of audits to a single cell. This allows
to prevent moving instances between different availability
zones as users have likely configured such isolations for
redundancy. Limiting the scope to a single cell also prevents
performing operations on parts of the infrastructure that might
be scheduled for decommissioning. Finally, using single cells
provides easier insight into why certain strategies have led to
a set of recommended actions.

In Watcher audits can be created in advance for later use
using so called audittemplates. These templates allow to store
meta information such as the strategy to use and its associated
goal. More important, however, these audittemplates support
the scopes. These scopes will allow to specify which aggre-
gates and availability zones to use when executing the audit.
Moreover, these scopes allow to exclude specific compute
nodes and instances as well. Finally, these scopes can be
specified per type of data model such as storage or compute.
Finally, the scopes are defined using YAML or JavaScript
Object Notation [49] (JSON) files.

Since the concept of scopes is already well in place using
the audittemplate feature the most obvious solution would be
to apply the scope before gathering data about compute nodes
and instances. This would limit the calls made to external
APIs to only make requests for compute nodes and instances
as defined. Of course some additional API calls are needed
to gather information about which compute nodes belong to
certain aggregates and availability zones. This should greatly
outweigh the impact of gathering all available information.
The data model scopes(audit scope) are already readily avail-
able to audittemplates. Consequently, it should be relatively
simple to change the order in which this scope is applied to
the model.
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An alternative would be to have a continuously updated
data model that is constructed on a piece by piece basis by
retrieving information from a single aggregate and adding
it to the overall data model. The execution of audits would
then have to be blocked until all information that the audit
needs is contained in the data model. This approach could
require significantly more memory as it would always have
a data model with the complete infrastructure. Although it
would more easily allow multiple audits to run in parallel.
When multiple audits are being run in parallel using the same
data model instead of having a data model per audit it could
eventually outperform the current solution. This applies only
if it was common to run multiple audits in parallel. This
solution would require significant changes to Watcher not only
in the way the data model is build but also in improving the
threadpool to run multiple audits in parallel.

The scalability issues introduced due to the way the data
model was build was discussed with the community via email
and Licanwei proposed to implement this by changing the
order in which the data model scope is applied to the model.
As typical for the methods used to collaborate in Watcher a
spec was written [50] to describe how the feature would be
implemented followed by the implementation itself [51].

7.1. Performance Measurements

The entire CERN OpenStack cloud consists of roughly 70
cells but each cell has significant differences in the amount
of compute nodes and instances in it. It is not possible
to do measurements with all 70 cells of the cloud due to
the impact that would have on its operation. After careful
discussions it was decided to take measurements up to five
cells consecutively. Because of the limited amount of cells
the choice of cells could significantly affect the estimate for
all 70 cells. The cells were chosen based on the amount of
compute nodes and instances so that the five cells would
accurately represent all 70 cells. All relevant information about
the chosen cells is shown in table IV.

TABLE IV: Selected Nova cells to use in performance mea-
surements

Name ID compute nodes Instances

gva_shared_002 60 136 546 - 670
gva_shared_003 61 164 1785
gva_shared_009 65 123 1640
gva_shared_020 99 44 351 - 354
gva_project_o48 102 56 11 - 157

Overview of Nova cells used in performance measurements.

The measurements from these five cells will be used to
estimate the build time for all 70 cells. This estimate allows to
evaluate the achieved performance improvement from imple-
menting the data model scope. Since the scope will allow to
only gather data from a single cell instead of the entire infras-
tructure. Coincidentally, CERN aims to start using Watcher
with limited scopes most likely single cells. To achieve these

estimates a thorough well defined methodology is needed to
achieve a high accuracy. Firstly, certain functions of Watcher
will be adapted to perform the performance measurements. As
it is important to ensure that only the build time for the data
model is measured. With the measurements Python will be
used to estimate the total build time for all 70 cells. However,
it might be difficult to make reasonable estimates for such a
much larger infrastructure. To maximize the accuracy of the
estimate many measurements for the same cells will be taken.
Still, the operation of infrastructure must be taken into account.
To attempt to proof the accuracy of the predictions statistical
analysis will be used. In this analysis the null hypothesis
will be that there is no correlation between the measured
and estimate data. Linear regression will be used to test this
hypothesis. Finally, the results from both the measurements
and the predictions will be shown.

To perform these measurements the execution function of
the Nova cluster collector was modified. This allowed to
only measure the time taken to build the data model without
taking other operations into the measurement. In addition the
modifications are used to output important information that
allows to validate the measurements. Afterwards the further
execution of the process is stopped by letting the python
debugger set the trace since only the measurements are of
interest. The implementation of this measurement technique
is shown in figure 20.

import time

LOG.warning("Measurements started...")

start = time.time()

# Data model is build here . . .
end = time.time()

LOG.warning("Total time: {0}".format(end − start))
LOG.warning("Total compute nodes: {0}".format(len(\

self.model.get_all_compute_nodes())))

LOG.warning("Total instances: {0}".format(len(self.\

model.get_all_instances())))

import pdb; pdb.set_trace()

Fig. 20: Implemented performance measurements and logging
in Nova cluster collector execute function.

As mentioned the amount of measurements taken will be
limited due to the impact it might have on the infrastructure.
Still, to improve the estimates many different combinations
of cells were measured as well as single cells. Single cells
were measured five times as the are typically smaller result-
ing in a smaller impact. While combinations of cells were
measured twice. Despite that the extend of the measurements
might seem limited this still results in over 60 individual
measurements. All of these measurements are available in
the appendix 12, 12. Additionally, git can be used to check-
out this specific version of Watcher by using the commit
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hash 36c2095254a24cbcfa7bc11b8bd453de0f659c5a using the
command:8

git checkout 36c2095254a24cbcfa7bc11b8bd453de0f659c5a

To make an estimate the Numpy library was used with the
polyfit function [54]. This function computes a polynomial
limited to a specifiable degrees of freedom. Furthermore, the
computed polynomial will have a minimized squared error to
best fit the data. Internally the function shown below is used
to minimize the squared error:

E =

k∑
j=0

|p(xj)− yj |2

To evaluate the generated polynomial another part of the
Numpy library will be used. This function called linregress\

() allows to compute linear regression so that the correlation
between the measured and polynomial data can be proven.
Since the polynomial is computed by minimizing the squared
error this should always be true. Nonetheless, this step is
performed for completeness and as validation.

Fig. 21: Measured time to build data model per number of
compute nodes.

With the methodology described the measured results can
now be detailed. These result will not yet include any estimates
for higher number of cell counts. In figure 21 the X axis shows
the amount of compute nodes used in the measurement and

8The repository can be found online [52] similarly to a guide on using git
[53].

the Y axis shows the required time to build the data model in
seconds. Compute nodes are used for the X axis as to better
scale the graph, additionally, allowing to easily distinguish
between different cell combinations. The two curves drawn
into the diagram depict the start of the estimates. In dark blue
on a dotted line the 1st order polynomial is shown while the
2nd order polynomial is shown in cyan on a solid line. The
difference between the first and second order polynomials is
their degrees of freedom. Effectively, the degrees of freedom
limit the curvature of line in between points. A first order
polynomial will be a straight linear line while a second order
polynomial can be quadratic. Nevertheless, this freedom is
only applied while minimizing the squared error so it does
not necessary result in a sharper curve. However, higher order
polynomials should be used carefully as they have a high
change of overfitting. As a result only the first and second
order polynomials are used to make estimates in this case.

Some important aspects of the measurements can not easily
be shown in figures such as 21. For instance, the mean time
to build the data model for a single cell is 427 seconds. When
normalized per compute node this is 4.16 seconds. Taking
these means to estimate the build time for all 70 cells could
have very poor results. This is because having multiple cells
in the scope has an unknown effect on overall build time. As
a result collections of cells could have lower or higher means
normalized per compute node. Finally, The original data for
all measurements can be found in the appendix 12.

Before making any estimates the polynomials need to be
validated. The validation is performed by using linear re-
gression on the measured values and the estimated values.
A scatter plot visualizing these used data is shown in figure
22. In the figure it appears that there is a strong correlation
between the measured and estimate data. As mentioned linear
regression will be used to test the null hypothesis that there is
no correlation. In addition a confidence interval of 99% will
be used since the estimate will be used to predict for a much
larger infrastructure. The strict confidence interval should help
ensure the estimate is highly accurate, while still estimating
for a roughly 14 times larger infrastructure than measured.
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Fig. 22: Scatterplot comparing measured and estimated
values.

The P-value for 1st and 2nd order polynomials are 8.94e−
28 and 7.34e − 29 respectively. Given the 99% confidence
interval a P-value of 0.01 or lower is required. Since 8.94e−
28 and 7.34e − 29 are well below 0.01 the null hypothesis
is rejected in both cases. To conclude, a correlation between
the measured and estimated data can be assumed with 99%
confidence. Which of the two polynomials is a better estimate
can not be concluded. This is a common misconception in
statistics as a lower P-value does not indicate a better estimate.
A lower P-value can only be used to infer the hypothesis with
a higher degree of confidence while the confidence interval
should always be chosen before testing a hypothesis not after.
Nevertheless, these polynomials are statistically significant and
can now be used to estimate the data model build times for
all 70 cells.

Before the values for all 70 cells can be estimated the
amount of compute nodes needs to be known. The amount of
compute nodes depends on the measurement system queried
to determine this value, moreover, this value tends to fluctuate
slightly over time. Any value between 7500 and 9500 will be a
reasonable estimate. however, to more precisely determine the
true value the Grafana monitoring solution was used on the
26th of July 2019. In total there were 7991 compute nodes
actively shown by Grafana on that day. The results of the
estimates for this number of compute nodes is shown in figure
23.

Fig. 23: Estimated data model build times for all 7991
compute nodes.

These estimates results in a value between 26471.63 and
194303.99. Although the variance is quite high both should
be reasonable predictions, however, since these values will be
used to determine the performance improvement the lowest
estimate is used for fairness. From the five measured cells
the mean time to build the data model was 427 seconds,
as a result the data model scope provides a 62 times better
estimated performance. Overall the data model scope works
as expected and is likely to provide a very substantial per-
formance improvement. The data model build time of 427
seconds is low and enough that Watcher can be deployed in
CERN’s infrastructure with this performance.

7.2. Discussion
Unlike previous section of this work not many examples

of the code were detailed. Neither were many architecture
decisions around the reimplementation of the data model scope
discussed. This is due to the changes being made by another
contributor [29] while the source code analysis was still being
performed. Nevertheless was this change reviewed by other
contributors and has it since been tested in production suc-
cessfully as demonstrated by the performance measurements.
Before fully usable, however, some small fixes were necessary
[55].

Although the functionality of the new data model scope
works very well the architecture could be improved. Because
of the existing method for applying scopes together with time
constraints to implement this feature. The resulting imple-
mentation has many pieces of functionality copied over from
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the scope classes into the cluster model collector. Ideally, the
classes used to apply the scope should be used by the cluster
data model collectors to facilitate the scope. This is a good
improvement to investigate implementing in the future as it
would improve the maintainability of Watcher.

Another possible future improvement would be implement-
ing the new methodology to apply the scope to other cluster
model collectors. Currently, this new method to apply the
scope is only used when the model is build for Compute. With
the Storage and BareMetal models the old method is currently
left unchanged. This improvement can be made in parallel with
the improvements to the scope classes their responsibilities.

As mentioned using the mean to estimate the build time
could have poor results. To demonstrate the same scatter plot
as shown in figure 22 is made. In this figure the measured
values will be compared with the estimate from the mean
based on 4.16 ∗ x. The results are shown in figure 24. They
show that there still is a clear linear relation between the
estimated and measured values, however, the error between
the estimated and measured value is now orders of magnitude
larger than with the polynomials. As a result these estimates
would be far less suitable for predicting the total build time
for all 7991 compute nodes.

Fig. 24: Scatterplot comparing measured and estimated
values using a simple mean estimate.

8. NOVA API CALL OPTIMIZATIONS

The OpenStack compute component Nova is Watcher’s
primary effector. It is used to move instances across com-
pute nodes but also supplies the information to construct

Watcher’s data models. However, Nova is a core component of
OpenStack and the API is frequently used by many different
components not just Watcher. In CERN’s cloud many instances
of the Nova API are run in parallel with a load-balancer. This
is necessary to be able to handle the load of all users and
components. It is desirable to keep this number of parallel in-
stances as low as possible while maintaining good performance
since it would allow a larger part of the infrastructure to be
used for its main purpose. To maintain a low number of Nova
API instances Watcher should use the Nova API effectively.
In addition, the efficient use of Nova API is also very likely
to have performance benefits.

The ineffective use of the Nova API was discovered by
another contributor named Matt [56] who became an active
member in Watcher’s community in May. This period in
May marked the next release of Watcher which is known as
Stein, similarly, this name is the same for other OpenStack
components that follow the same six month release cycle.
Even though the discovery and implementation of these op-
timizations were performed by another contributor it remains
important to include it in this work. For these optimizations
CERN’s cloud infrastructure will be used as a platform to
evaluate and measure these improvements as well as possibly
suggest additional improvements. The same methodology will
be used as previously detailed for the data model scope as
well as the same cells in the infrastructure. However, the
performance measurements will not be used to predict higher
cell count data models. The same methodology can be used
since changes to API calls will be made in functions related
to building the data model.

The building of data model for Compute can be grouped
into three steps. The first is determining the compute nodes
that should be included based on the data model scope. This is
done with two API calls to Nova. One call is for the availability
zones and the other is for the aggregates. After this step the
necessary information needs to be collected for the computes
nodes included in the scope. Currently, this is done with two
API calls per compute node in order to get all the details.
In the last step the server attribute of each compute node
is used to retrieve information about all the instances. The
server attribute only contains shallow instance objects so the
API calls are needed to retrieve all information. To retrieve
this information a for loop is used to iterate over the list
of instances, subsequently, making an API call to retrieve all
information for the given instance.

The implemented changed will be described for these three
steps individually as well as why they were made. With the
changes the same method for taking measurement as in section
7 will be used as this will allow to compare the results
in fair manner. During initial measurements a performance
degradation was encounter. This degradation will be explained
in detail including how it was resolved. Afterwards the results
and what can be concluded from them will be detailed. Finally,
the results will be used to conclude a rough performance
improvement estimate.
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8.1. Implemented Changes

It can be assumed that any API call will introduce significant
delay so, naturally, the amount of API calls to Nova should be
minimized. In two out of the three previously detailed steps
this could be achieved. Firstly, the amount of API calls per
compute node could be reduced from two to just one. This
required changes to the Nova API [57] so that the details could
be retrieved immediately. In figure 25 the difference between
the original and improvement implementations are shown.

def old_get_compute_node:

for node_name in compute_nodes:

cnode = nova.compute_node_by_name(

node_name , servers=True)

if cnode:

node_info = nova.compute_node_by_id(

cnode[0].id)

...

def new_get_compute_node:

for node_name in compute_nodes:

cnode = nova.compute_node_by_name(

node_name , servers=True,

detailed=True)

if cnode:

...

Fig. 25: Comparison of old and methods to get compute node
information.

The third step also underwent changes but did not require
any changes to the Nova API. Before, an API call was
necessary for every single instance. Now a single API call
is used to retrieve all instances for any given compute node
at once. The differences are illustrated in figure 26. All these
changes should together provide a performance improvement,
however, this should still be quantifiable measured. Many
actors were excited for these measurements as it took effort
from many different contributors to develop these changes.

def old_add_instance_node(self, node):

instances = []

for uuid in node.service[’servers’]:

instance = nova.find_instance(uuid)

instances.add(instance)

...

def new_add_instance_node(self, node):

host = node.service["host"]

filters = {’host’: host}

instances = nova.get_instance_list(

filters)

...

Fig. 26: Comparison of old and methods to get instance
information.

8.2. Performance Degradations

During the initial measurements the performance results
were much worse than before. This was very unexpected as it
took between 26 and 124 percent longer to build the same data
models. The expected result were for the new methodology
to be faster than the previous. These measurements were
thoroughly discussed with the community. Many contributors
expected something to be wrong to cause this regression.
It took several days of investigating to determine the exact
cause of this regression during this period the community
collaborated extensively.

TABLE V: Degraded performance measurements

Cell ID(s) Compute nodes Time before Time after slower %

60 136 319 536 68%
61 164 751 953 26%
65 123 680 917 34%
99 44 299 671 124%
102 56 80 172 115%

Overview performance degradation after initial changes to the Nova API calls.

Eventually the cause was discovered to be due to the
implementation of get_instance_list(). This function will
perform two API calls to get all the instances from the host.
This is done to ensure all instances are included as Nova can
be configured to only return a limited amount of instances
per request. The default limit is 1000 instances per request
which a single compute node should never realistically exceed.
Luckily, the get_instance_list() function provides a limit
parameter to manually set the amount of instances that are
to be retrieved. If this parameter is set no additional API calls
will be made after the set number of instances is retrieved.
Coincidentally, the amount of instances on any given compute
node is already retrieved as an attribute from the compute
node itself. As a result this value can easily be passed to the
get_instance_list() function. Preliminary testing showed that
correctly passing the limit parameter resolved all performance
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degradations. With the performance degradations resolved the
measurements could be redone to, finally evaluate the results.

8.3. Results

As mentioned before the same methodology as in section 7
is used, as a result the same amount of measurements are taken
with the same combinations of single and multiple cells. A
direct comparison of the measurements from before and after
the improvements are shown in figure 27. The same order
polynomials as used previously are computed for both sets
of data. Overall there is a notable performance improvement
over the entire range of compute nodes. Furthermore, the
performance improvements seems to become more significant
with larger collections of compute nodes. The performance
improvements are evaluated at three measurements points
being for the lowest amount of compute nodes, the mean
of all measurements and the highest amount of compute
nodes. The smallest measurements with just 44 compute nodes
measured a performance improvement of 27% percent. While
the largest measurements with 523 compute nodes measured
a performance improvement of 39% percent. Finally, from all
the combined measurements the improvement was 32% on
average.

Fig. 27: Performance comparison from before and after
optimizations to Nova API calls.

The results clearly emphasize the importance of using and
understanding API’s correctly. As it can not only affect the
performance of the application itself but also impact the
services it is using or the underlying network.

8.4. Discussion

These improvements to the performance while building the
data model could perhaps be applied to other parts of Watcher
as well. This would require further analysis to determine
what parts could benefit, nonetheless, being resourceful is an
important aspect of a mature application.

With more and more computing power becoming avail-
able worldwide to both businesses and consumers there is a
subsequent increase in energy consumption worldwide [58],
[59]. Program methodologies seem to have shifted from being
resourceful to using more resources as development efforts
seems to outweigh hardware in terms of cost. The field of
green computing is an important scientific field that focuses
on the effective and power efficient use of computing resources
[60]. However, more effort should be spent on not only mak-
ing computing hardware more efficient but more important,
making applications efficient as well.

9. PARALLELISM PROOF OF CONCEPTS (POC)
Modern hardware typically has processing units that can

execute many tasks in parallel. Typically, this is achieved using
multiple so called cores of which all are capable of executing
instructions at any given time. In more specialized hardware
such as graphics cards these are typically called compute
units (CU). With all these different types of hardware being
able to perform many operations in parallel it has become
important for applications to be able to leverage this degree
of parallelism.

The analysis of Watcher indicated that only very limited
patterns to enable parallelism were being used. As indicated
the Application was separated into three individual executables
as well as workers that should allow to run multiple audits in
parallel. In practice the data model prevents running multiple
audits in parallel because the data model itself is a singleton.
When the singleton pattern is applied to a class only one
instance of that class can exist at any given time. Since audits
are very likely to have different scopes with different data
models this results in effectively one audit being able to run
at any given time. Any attempt to get read or write access
to the data model will be blocked until the execution of the
already running audit is finished. These limitations are limited
to the decision engine executable although, similar limitations
exist in the other executables as well.

While the implementation around the data model for audits
could be improved there are likely better candidates to improve
parallelism first. Even after the Nova API improvements the
majority of execution time is still spent on building the data
model. To improve the parallelism in Watcher the building
of the data model is the current best candidate. In the rest
of this section the approach to implement the parallelism
improvements and the reasoning will be described. In addition
the solution will be evaluated using performance measurement
similar to other improvements. Important to note is that at the
time of writing (30th of July 2019) these improvements are
still Proof of Concepts (PoC) and none have been implemented
in Watcher.
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The potential of applying parallelism was discussed several
times with the upstream community. These discussions led
to different methodologies being proposed. As a result two
PoC’s have been created to test different methodologies. One
of the methodology uses a threadpool [61] to which functions
can be submitted for execution. The other methodologies uses
a special library called Taskflow [62]. Taskflow is an exten-
sive library supporting many different types of parallelism
including distributed onces, however, the PoC implementation
will focus on using a unordered flow. Some aspects of the
implementations are the same in both, notably the different
parts that will be parallelized. As described in other sections
the operation of building the data model consists of three
steps. First, the compute nodes are determined based on
the aggregates and availability zones. Second, the relevant
information is retrieved for each compute node and finally, the
relevant information is retrieved for all the instances per given
compute node. Each of these steps can be parallelized and
will be in both implementations. In figure 28 the psuedo code
demonstrates how these three steps are executed in parallel
one after the other.

def add_physical_layer():

compute_nodes = set()

waits = []

waits.add(parallelget(aggregates))

waits.add(parallelget(availability_zones))

wait_until(waits)

for node in compute_nodes:

waits.add(parallelget(node))

wait_until(waits)

for node in compute_nodes:

waits.add(parallelget(node.servers))

wait_until(waits)

Fig. 28: Pseudo code demonstrating parallel operation.

The threadpool uses a singular pattern so the same pool can
be accessed from anywhere within Watcher’s code. Further-
more, the amount of workers or threads to be supported can
be configured to best suit different infrastructures. Effectively,
the implementation allows to queue the execution of arbitrary
functions so that they can be executed in parallel. Upon
submitting a function for execution the futurist library returns
a so called future. This object allows to monitor the execution
process, therefor allowing to retrieve the returned values when
finished. Furthermore the futurist library exposes easy method-
ologies for performing additional operations when a future
finishes execution. If desired an additional function could be
submitted to the threadpool when the execution of another
finishes. This pattern is implemented in the PoC threadpool

as well. The implementation offers one special function for
effectively using the threadpool named do_while_futures. This
function allows to perform a do while loop iterating over a
list of futures until all of have completed execution. Natively
this do while loop does not exist in Python, nevertheless, in
this case it effectively allows to submit functions of step three
as soon as a function from step two finishes execution. This
special do while loop for futures is shown in figure 29.

def do_while_futures(futures, fn, *args, **kwargs):
waits = wait_for_any(futures)

while len(waits[0]) > 0 or len(waits[1]) > 0:

for future in wait_for_any(futures)[0]:

fn(future, *args, **kwargs)
futures.remove(future)

waits = wait_for_any(futures)

Fig. 29: Do while loop for list of asynchronous futures.

The taskflow implementation has many similarities with
the threadpool implementation but does not use the singular
pattern. Instead the implementation works by defining so
called tasks which are executed by placing them into flows.
Each of these tasks extends a class from the taskflow library to
implement a specific interface. These tasks do not work with
the concept of futures, as a result parts of step three can not
immediately be scheduled when a part of step two finishes.
Since the threadpool implementation does support this pattern
it is likely that the taskflow implementation will perform
worse. For each distinct parallel operation one task was defined
which resulted in a total of four tasks. These tasks are for
1) collecting compute nodes from aggregates. 2) Collecting
compute nodes from availability zones 3) collecting detailed
compute node information. 4) Collecting instance information.
First the tasks for aggregates and availability zones are added
to one flow so they can be executed in parallel. When these
finish execution the resulting set of compute nodes is used for
another flow. This second flow gathers all detailed compute
node information, subsequently, when all tasks of the second
flow finish the resulting compute node objects are used for the
last flow. This last flow gathers all instances per compute node.
Finally, when the last flow finishes execution the data model
is build completely. One of these tasks is shown in figure 30,
notably these tasks return data by updating a reference similar
to many paradigms in C++. For clarity parameters used for
returning data start with an underscore such as _instances for
instance.
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class GetInstancesTask(task.Task):

def execute(self, node_name , length,

nova_ref , _instances):

filters = {’host’: node_name}

limit = length if length <= 1000 else −1
_instances.extend(

nova_ref.get_instance_list(

filters=filters,

limit=limit))

Fig. 30

The managing of parameters for tasks is significantly more
complex than with the threadpool implementation. Taskflow
manages parameters by specifying binds when creating tasks,
furthermore, these binds are named key value pairs which
enables sharing parameters among different tasks. Although
perhaps cumbersome for simple forms of parallelism as re-
quired in this case, it provides the powerful feature were one
task is able to provide the parameters for another.

Both PoC’s were not merged upstream, however, it is still
important to make the source code for these implementations
available. To achieve this both patches have been submitted to
the review system Gerrit?? with a so called do not merge tag.
These patches can be downloaded by using git in combination
with a command line interpreter such as Bash. The following
two commands can be used to retrieve the patches for the
taskflow and threadpool PoC’s respectively as is shown in the
figures 31 32. Finally, it is important to note that these PoC’s
are build in addition to the improvements to the Nova API
calls.

git fetch https://review.opendev.org/openstack/\

watcher refs/changes/64/671264/8

&& git checkout FETCH_HEAD

Fig. 31: Command to retrieve patch for taskflow PoC.

git fetch https://review.opendev.org/openstack/\

watcher refs/changes/56/671556/3

&& git checkout FETCH_HEAD

Fig. 32: Command to retrieve patch for threadpool PoC.

Before comparing the results with previous implementations
the two different PoC’s are first evaluated and compared.
Subsequently, only the best performing PoC will be com-
pared against previous implementations. The same comparison
between implementations is used to compare the threadpool

and taskflow as is shown in figure 33. The results clearly
indicate that the taskflow implementation is slightly slower
than the threadpool implementation. Not only overall but
more important, for almost every single measurement with
one or two exceptions. Similarly the two PoC’s are compared
using a scatterplot as is shown in figure 34. Again, the
scatterplot shows that the taskflow PoC has slightly worse
performance, moreover, it shows that the taskflow implemen-
tation has a larger variance than the threadpool. In addition
the measurements indicated significantly higher memory usage
with the taskflow PoC. The memory usage was in the order
of around 400 to 500 megabytes of memory compared to
around 140 megabytes for the threadpool implementation. The
larger memory consumption is likely due to the large set
of advanced features the taskflow library supports, however,
almost all of these features are unnecessary for the required
form of parallelism. Typically the taskflow library is used
to perform important tasks in distributed systems that need
a particular order, moreover, typically tasks need to handle
special revert or fallbacks methods to design behavior in
the case of failure. Because of the worse performance and
higher memory consumption it is clear that the threadpool
implementation should be used.

Fig. 33: Comparison of threadpool and taskflow
implementation.
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Fig. 34: Scatterplot with the results from the threadpool on
the x axis and the results from the taskflow implementation

on the y axis.

The same measurements as in the previous sections were
taken to compare all implementations consecutively. The re-
sults of this comparison are shown in figure 35. Immediately
the very large performance difference between the two previ-
ous implementations and the threadpool are clear. On average
the threadpool takes 38 seconds to build the data model
for both single and multiple cells. Compared to the results
from the Nova API call optimizations having 527 seconds on
average. This results in a build time that is roughly 14 times
faster than before. Instead of denoting the improvement in per-
centage now the amount of times it is faster than the previous
solution is denoted. This is done because when performance
improvements become large it becomes hard to interpret the
improvement with a percentage. For example the performance
improvement of 14 times faster would be a 93% performance
improvement. For completeness the minimum and maximum
number of compute nodes are also compared with the same
denotation. The minimum number of compute nodes has a 21
times faster data model build time while with the maximum
number of compute nodes the build time is 15 times faster.
Overall the parallelism using both the threadpool or taskflow
implementation have very large performance benefits. Finally,
because of these large improvements it is important to invest
the necessary development efforts to fully implement the
threadpool PoC.

Fig. 35: Performance comparison of all three
implementations to build the data model.

9.1. Discussion

The currently developed PoC’s are not written in mature
way that would be sufficient for production code. Still the
performance improvements of especially the threadpool PoC
are so large that it is important to invest the necessary efforts
to develop a mature threadpool implementation. Nevertheless,
the most desired implementation must be discussed with the
community following a thorough review process.

The resulting threadpool implementation can be reused in
other parts of the Watcher decision engine, predominantly
when collecting metrics from datasources. A very rudimentary
test showed that similar speed improvements can be achieved
during the collection of metrics as the building of the data
model.

The amount of parallelism used during these measurements
was using 16 threads, however, higher or lower values can
have better results depending on the infrastructure available.
The 16 thread configuration was used because it had the best
results in CERN’s infrastructure but the value should be user
configurable to best fit different infrastructures. Moreover, high
values could negatively impact other services their operation.
Therefor, the importance of Watcher’s performance should
evaluated against the operation of the rest of the infrastructure.

10. GENERAL IMPROVEMENTS

This last section regarding changes to Watcher details im-
provements that are either smaller or otherwise less significant.
Nevertheless, these changes are still important and improve the
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maturity of Watcher overall. These changes will be described
in lesser detail and typically do not include any performance
evaluations. In addition, some of these improvements are
addressed in individual sub sections such as problems with
Python version 3.7. The short general improvements without
sub sections are detailed first.

The Grafana datasource required several additional changes
before it could be fully developed. Now Watcher supports
a configuration parameters which forces datasources to be
used in a specific order. Effectively, this allows to now use
the Grafana datasource without attempting to use Gnocchi or
others. This prevents unnecessary errors from being generated.
Another improvement to the datasources was the removal of
several pieces of functionality from the datasource base class.

Before the datasource base class contained the metric
mappings discussed before for every individual datasource.
In object oriented programming when a base class knowns
information about it’s subclasses this is known as an anti-
pattern. These anti-patterns are paradigms that can be used in
software but should always be avoided, however, typically anti-
patterns do list one or two exceptions. In addition to patterns
and anti patterns object oriented programming also defines
principles. These principles known as SOLID [63] can be used
to identify how good a pattern is or if it an anti-pattern. Other
principles such as GRASP [64] exist while it should be noted
that they are unrelated. When taking SOLID into account it
becomes clear that two principles are violated with this anti-
pattern. These are the open close [65] and Liskov substitution
[66] principles. These problems were resolved by making the
metric map a attribute of the base class, subsequently every
sub class would have to define the correct values for this metric
map. The result is that the base class does not known about
the existence of sub classes.

The final change that was made to the datasource was
the renaming of functions to make them consistent. This
helps other developers understand the operation of Watcher
more easily while, additionally, it improves the maintainability.
The changes were simple such as functions being named
get_instance_memory and get_host_ram, naturally such func-
tions should be renamed so they both use the same terms.

10.1. Python 3.7 Deadlock

Python currently still supports two main versions which are
typically individually explicitly installed on systems. These
version are Python 2.7 and 3.x although Python 2.7 is sched-
uled to no longer be maintained after the first of January 2020
[67]. This is done to provide a more maintainable and healthier
programming language. Additionally, When a program or tool
is scheduled to no longer be maintained it is called End Of
Life (EOL). Because of the EOL for Python 2.7 it is important
to ensure Watcher can fully function with Python version 3.x.
However, even though most functionality of Watcher works
identical on both versions the unit tests encounter significant
problems.

Unit tests in most OpenStack components are run using a
tool called stestr [68] which is managed by another higher level

tool called Tox [69]. Both stestr and Tox support parallelism
but in different ways. This parallelism is important because the
unit tests in Watcher when using Python 3.x encounter dead-
locks. A deadlock is a phenomenon in parallel programming
when multiple threads are all waiting for the release of the
same resource but none of them are able to free any resource
without continuing to operate. This causes all threads to wait
indefinitely and the execution of the program halts completely.

This problem was well known due to a bug report [70]
but since Watcher knows many levels of parallelism it was
challenging to determine were the deadlock was caused.
Luckily the configuration used for Tox did not result in
any form of parallelism being used. The stestr still used
parallelism to speed up the execution of unit tests. Moreover,
configuring stestr to not use any form of parallelism resolved
the deadlocks. This is however, not the preferred solution as
it indicates another threading problem that lies elsewhere in
Watcher’s code. Eventually the deadlocks were determined
to be caused by the eventlet [71] library. This library no
longer needs to be used within OpenStack projects because the
community actively develops the futurist [61] library instead.
The use of eventlet was removed from the decision engine
being replaced with futurists green threads instead.

10.2. OpenStack Placement Support

One of the major advantages of virtual machines (instances)
is that multiple virtual processor cores can be allocated to the
same physical core. This principle is called over-commit and is
not only possible with processors but also with random access
memory (RAM) and disk space. However, Over-commitment
of resources needs to done carefully as it can cause contention
which will cause performance degradation. One of the methods
available to prevent contention is the allocation-rate as this
controls the allowable percentage of over-commitment. When
the allocation ratio is two only two vcpus will be allocated to
the same physical core. In OpenStack these concepts of over-
commit and allocation ratio are also supported as a result it is
heavily used in CERN’s cloud infrastructure.

Before the recent release cycle of Stein these allocation
ratios were managed by the Nova component. Currently,
these ratios are part of a new component called Placement.
Watcher never supported these allocation ratios but should
since strategies could make much more informed decision
if it was available. The introduction of Placement as a new
OpenStack component is an excellent time to invest in the
development of this feature.

The support of Placement was suggested by Licanwei [29]
who also developed support for this Component. Currently,
much of the initial work to support Placement is complete but
it is not integrated into strategies yet. To support Placement
functions to retrieve specific types of data have been placed
in a helper class. This is similar to how interaction with other
OpenStack components is achieved. Subsequently, this helper
class is used to retrieve the necessary information during the
building of the data model. An example of how these attributes
are added to elements in the data model is shown in figure 36.
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inv = placement.get_inventories(node.id)

if inv and orc.VCPU in inv:

vcpus = inv[orc.VCPU][’total’]

vcpu_reserved = inv[orc.VCPU][’reserved’]

vcpu_ratio = inv[orc.VCPU][’allocation_ratio’]

else:

vcpus = node.vcpus

vcpu_reserved = 0

vcpu_ratio = 1.0

Fig. 36: Demonstration of added attributes with compute node
inventories including fallback.

The inventory data from Placement allows to calculate how
much of a given resource on the compute node is free. Each
compute node element in the data model has been given a
function to determine this based on current attribute values to
help simplify this calculation. The formula for this calculation
is shown below.

(vcpu− resevered) ∗ ratio− used

Naturally, making retrieving all this information from Place-
ment requires additional API calls. The current implementation
introduces two additional API calls per compute node. The
same performance measurements done in sections 7 8 9 should
be redone with these new API calls. Finally, to further improve
Placement support new strategies need to be developed to use
the information from Placement effectively.

11. CONCLUSION

The previous sections describe a methodology to engage
with a community while improving the communities maturity
and methodologies for working together. Watcher’s commu-
nity shows to be accepting to these proposed changes resulting
in bi-weekly meetings which greatly improved communica-
tion. Although the Watcher community is small compared to
other OpenStack component communities they collaborate in
a mature and extensive manner. This maturity will help resolve
any potential future issues but for now efforts are best focused
on developing Watcher instead.

Analyzing the source code and operation of Watcher helps
identify many of the important development efforts in this
work. The section describes a thorough methodology to per-
form such an analysis which could be applied to other open
source projects. It should be noted that the analysis results are
largely described in the introduction to improve the structure
of this work.

This work includes five sections that each describe an
improvement that is necessary to deploy Watcher. Developing
the Grafana datasource is part of the original assignment the
other four sections are determined from the analysis.

The Grafana datasource requires extensive configuration
which leads to significant development efforts. This con-
figuration flexibility is necessary to support many different

infrastructures which other users might have. The Grafana
datasource is improved by supporting a YAML file for config-
uration. Any further improvements to the Grafana datasource
are simplified because of the development of Grafana transla-
tors which handle specific database conversions. Finally, How
the datasource is configured is documented to improve the ease
of use for other users and as future reference.

The Grafana datasource requires the refactoring of the
interface between datasources and strategies. The base class
uses multiple methodologies because multiple datasources
were developed before the base class. The refactoring reduced
the methodologies to only one so every datasource can be used
for every strategy.

The data model scope is the first of three changes to improve
the performance of Watcher. This change allows selection of
specific aggregates and / or availability zones, in such a way
that parts of the infrastructure can be excluded from the audit.
This significantly reduces the amount of time required to build
the data model. Statistical methods are used to estimate the
achieved performance improvement for which the significance
is evaluated using linear regression. The result showed that the
build time is estimated to be reduced from between 26471 and
194304 seconds to just 427 seconds for a single aggregate.
Conservatively the time to build the data model is now 62
times shorter.

The second changes are made to the API calls used to
build the data model. These API calls retrieve important
information about compute nodes and instances from the Nova
component. Typically, API calls introduce significant delays in
the operation of applications such as the decision engine of
Watcher. Theoretically reducing the amount of API calls will
reduce the time to build the data model. The amount of API
calls is reduced from two to one for compute nodes while it
is reduced from n to 1 for the instances for a given compute
node. Due to an issue in the get_instance_list function the
performance is much worse, however, this issue can be solved
by correctly setting the limit parameter for this function. The
performance is evaluated with the limit parameter correctly
set resulting in a performance improvement. The reduced
API calls introduce a performance improvement of 32% on
average.

The third changes are made by implementing parallelism
when building the data model. Two different methodologies
are evaluated each using the same three step process. The
primary differences between the methodologies is the under-
lying Python library used to introduce parallelism, however,
both of these libraries are developed by the OpenStack com-
munity. Both implementations called threadpool and taskflow
respectively are compared against each other. The threadpool
implementation has the best performances used to compare
against the API call changes. The threadpool implementation
offers a large performance improvement that reduces the data
model build time from 527 to 38 seconds on average. However,
before the threadpool can be implemented in Watcher it
needs to be reviewed with subsequent changes as the current
implementation is a proof of concept.
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Several smaller improvements are made that are to small
to be described in an entire section. These improvements
include 1) improved Python 3.7 support 2) improvements to
the datasource base class 3) support for OpenStack Placement
among others. Other changes also alter functionality of the
datasources. The support for Python 3.7 is important because
older versions of Python are losing support in the near future.
While OpenStack Placement allows strategies to make more
insightful decision. This is because Placement provides in-
formation about hardware allocation ratios configured by end
users. Finally, the changes to the datasources are required to
integrate the Grafana datasource or simplify the integration.

This work introduces many changes to Watcher to either
increase the maturity or performance. The changes made to
improve the build time of the data model manage to reduce
it from an estimated 26471 to 38 seconds on average for
single cells. Many other changes allow Grafana to be used
as a datasource with the flexibility to be used in many differ-
ent configurations and infrastructures. However, many other
further improvements remain possible such as the refactoring
of the data model scope architecture for example.

12. DISCUSSION

Although many changes are made to Watcher there are still
other areas which can be evaluated and possibly improved.
Future work could evaluate these areas such as improving the
time to perform an audit for example. Current evaluations only
measured the time to build the data model, consequently, not
taking other factors into account. Factors such as the gathering
of metrics or even differences between strategies could have
an impact on the time required to execute an audit.

This work introduced many changes to either improve
performance or maturity. However, the purpose of Watcher is
to improve OpenStack cloud infrastructure to reach a certain
goal. In future work the effective of strategies to reach these
goals should be thoroughly evaluated. Likely many strategies
can be improved in different ways such as the algorithm used
for example.

ABBREVIATIONS

1) AUAS - Amsterdam University of Applied Sciences
2) TI - Technical Informatics
3) ALICE - A Large Ion Collider Experiment
4) RPS - Resource Provisioning Services
5) API - Application Programming Interface
6) AQMP - Advanced Message Queuing Protocol
7) UUID - Universally unique identifier
8) R&D - Research and Development
9) IaaS - Infrastructure as a Service

10) CERN - European Organization for Nuclear Research
11) LHC - Large Hadron Collider
12) PTL - Project Team Lead(er)
13) REST - REpresentational State Transfer
14) RFC - Request For Comments
15) HTTP - HyperText Transfer Protocol
16) SQL - Structured Query Language

17) YAML - YAML Ain’t Markup Language
18) EOL - End Of Life
19) OOM - Out Of Memory
20) JSON - JavaScript Object Notation
21) PoC - Proof of Concept
22) CU - Compute Unit
23) RAM - Random Access Memory
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Mutli cell performance measurements

TABLE VII: Multi cell performance measurements before improvements
git checkout 36c2095254a24cbcfa7bc11b8bd453de0f659c5a

Cell ID(s) Number of compute nodes Time in seconds

60, 99 180 620
60, 99 180 612
60, 61 300 877
60, 61 300 868
60, 65 259 816
60, 65 259 850
60, 102 192 442
60, 102 192 446
61, 65 287 1128
61, 65 287 1125
61, 99 208 894
61, 99 208 896
61, 102 220 799
61, 102 220 773
65, 102 179 606
65, 102 179 583
99, 102 100 481
99, 102 100 483
99, 65 167 848
99, 65 167 836
60, 61, 99 344 1355
60, 61, 99 344 1342
61, 99, 102 264 815
61, 99, 102 264 812
60, 61, 65 423 1284
60, 61, 65 423 1272
61, 65, 102 343 1149
61, 65, 102 343 1138
61, 65, 99 331 1167
61, 65, 99 331 1159
60, 61, 102 356 935
60, 61, 102 356 888
65, 99, 102 223 755
65, 99, 102 223 744
99, 102, 60 236 502
99, 102, 60 236 498
61, 99, 102 ,65 387 1282
61, 99, 102 ,65 287 1283
60, 61, 99 ,102 400 1507
60, 61, 99 ,102 400 1402
60, 61, 99, 102, 65 523 2184
60, 61, 99, 102, 65 523 2112

Overview of measurements for combinations of cells before improvements.
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TABLE VIII: Multi cell performance measurements after improvements with instance limit
git checkout 1e8b17ac46a9052234c9f56da42a2a4bb8250216

Cell ID(s) Number of compute nodes Time in seconds

60, 99 180 387.446
60, 99 180 384.842
60, 61 300 697.927
60, 61 300 712.997
60, 65 259 588.875
60, 65 259 592.453
60, 102 192 550.648
60, 102 192 550.281
61, 65 287 773.134
61, 65 287 750.082
61, 99 208 551.104
61, 99 208 550.228
61, 102 220 568.731
61, 102 220 576.249
65, 102 179 463.524
65, 102 179 468.651
99, 102 100 264.21
99, 102 100 261.478
99, 65 167 445.601
99, 65 167 447.505
60, 61, 99 344 1087.68
60, 61, 99 344 1081.828
61, 99, 102 264 693.764
61, 99, 102 264 682.532
60, 61, 65 423 1017.855
60, 61, 65 423 1020.404
61, 65, 102 343 898.471
61, 65, 102 343 888.279
61, 65, 99 331 881.073
61, 65, 99 331 873.355
60, 61, 102 356 831.178
60, 61, 102 356 830.58
65, 99, 102 223 589.878
65, 99, 102 223 579.599
99, 102, 60 236 512.932
99, 102, 60 236 535.225
61, 99, 102 ,65 387 1001.074
61, 99, 102 ,65 287 1010.962
60, 61, 99 ,102 400 1054.425
60, 61, 99 ,102 400 1212.645
60, 61, 99, 102, 65 523 1549.76
60, 61, 99, 102, 65 523 1560.273

Overview of measurements for combinations of cells after improvements
with instance limit.
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Single cell performance measurements

TABLE IX: Performance measurements single cell before improvements
git checkout 36c2095254a24cbcfa7bc11b8bd453de0f659c5a

Cell ID Number of compute nodes Number of instances Time in seconds

99 44 351-353 314
99 44 351-353 301
99 44 351-353 294
99 44 351-353 295
99 44 351-353 291
60 136 546-670 330
60 136 546-670 323
60 136 546-670 319
60 136 546-670 323
60 136 546-670 302
61 164 1785 763
61 164 1785 738
61 164 1785 753
61 164 1785 750
61 164 1785 752
102 56 11-157 87
102 56 11-157 85
102 56 11-157 85
102 56 11-157 87
102 56 11-157 80
65 123 1640 707
65 123 1640 676
65 123 1640 671
65 123 1640 693
65 123 1640 655

Overview of measurements for single cells before improvements
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TABLE X: Performance measurements single cell after improvements without instance limit
git checkout e4f80b54613d0858de47cee925d73927089acde7

Cell ID Number of compute nodes Number of instances Time in seconds

99 44 351-353 742
99 44 351-353 661
99 44 351-353 638
99 44 351-353 669
99 44 351-353 645
60 136 546-670 512
60 136 546-670 546
60 136 546-670 525
60 136 546-670 552
60 136 546-670 545
61 164 1785 988
61 164 1785 967
61 164 1785 948
61 164 1785 943
61 164 1785 918
102 56 11-157 146
102 56 11-157 191
102 56 11-157 164
102 56 11-157 164
102 56 11-157 195
65 123 1640 900
65 123 1640 902
65 123 1640 915
65 123 1640 923
65 123 1640 917

Overview of measurements for single cells after improvements without instance limit
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TABLE XI: Performance measurements single cell after improvements with instance limit
git checkout 1e8b17ac46a9052234c9f56da42a2a4bb8250216

Cell ID Number of compute nodes Number of instances Time in seconds

99 44 351-353 239
99 44 351-353 242
99 44 351-353 236
99 44 351-353 238
99 44 351-353 227
60 136 546-670 322
60 136 546-670 329
60 136 546-670 325
60 136 546-670 316
60 136 546-670 333
61 164 1785 550
61 164 1785 525
61 164 1785 553
61 164 1785 531
61 164 1785 550
102 56 11-157 65
102 56 11-157 66
102 56 11-157 64
102 56 11-157 73
102 56 11-157 67
65 123 1640 388
65 123 1640 415
65 123 1640 428
65 123 1640 410
65 123 1640 408

Overview of measurements for single cells after improvements with instance limit

40



TABLE XII: Performance measurements single cell threadpool
git fetch https://review.opendev.org/openstack/watcher refs/changes/56/671556/3 && git checkout FETCH_HEAD

Cell ID Number of compute nodes Number of instances Time in seconds

99 44 351-353 11.532
99 44 351-353 10.124
99 44 351-353 10.747
99 44 351-353 12.197
99 44 351-353 11.309
60 136 546-670 20.33
60 136 546-670 21.669
60 136 546-670 25.537
60 136 546-670 22.108
60 136 546-670 24.791
61 164 1785 36.517
61 164 1785 34.597
61 164 1785 36.072
61 164 1785 34.123
61 164 1785 41.216
102 56 11-157 14.896
102 56 11-157 14.325
102 56 11-157 12.065
102 56 11-157 11.881
102 56 11-157 12.166
65 123 1640 27.955
65 123 1640 30.030
65 123 1640 25.695
65 123 1640 27.686
65 123 1640 26.640

Overview of measurements for single cells with poc threadpool
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TABLE XIII: Performance measurements single cell taskflow
git fetch https://review.opendev.org/openstack/watcher refs/changes/64/671264/8 && git checkout FETCH_HEAD

Cell ID Number of compute nodes Number of instances Time in seconds

99 44 351-353 12.343
99 44 351-353 11.972
99 44 351-353 12.766
99 44 351-353 11.555
99 44 351-353 13.913
60 136 546-670 22.702
60 136 546-670 22.912
60 136 546-670 22.605
60 136 546-670 22.768
60 136 546-670 24.344
61 164 1785 36.891
61 164 1785 36.503
61 164 1785 37.308
61 164 1785 37.527
61 164 1785 37.117
102 56 11-157 12.243
102 56 11-157 14.501
102 56 11-157 13.308
102 56 11-157 12.271
102 56 11-157 14.823
65 123 1640 31.169
65 123 1640 30.268
65 123 1640 27.459
65 123 1640 26.185
65 123 1640 28.377

Overview of measurements for single cells with poc taskflow
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Plotting program for data model scope

# −*− coding: utf−8−*−
import matplotlib.pyplot as plt

import scipy

from scipy.stats import chisquare

from scipy.stats import linregress

from scipy.optimize import curve_fit

import numpy as np

import sympy as sym

x = [44, 44, 44, 44, 44, 56, 56, 56, 56, 56, 100, 100, 123, 123, 123,

123, 123, 136, 136, 136, 136, 136, 164, 164, 164, 164, 164, 167, 167, 179,

179, 180, 180, 192, 192, 208, 208, 220, 220, 223, 233, 236, 236, 259, 259,

264, 264, 287, 287, 300, 300, 331, 331, 343, 343, 344, 344, 356,

356, 387, 387, 400, 400, 423, 423, 523, 523]

y = [314, 301, 294, 295, 292, 87, 85, 85, 87, 80, 481, 483, 707, 676, 671,

694, 655, 330, 323, 319, 323, 302, 763, 738, 753, 750, 752, 848, 836, 606,

583, 629, 612, 442, 446, 894, 896, 799, 773, 755, 744, 502, 498, 816, 850,

815, 812, 1128, 1125, 877, 868, 1167, 1159, 1149, 1138, 1355, 1342, 935,

888, 1282, 1283, 1507, 1402, 1284, 1272, 2184, 2112]

p1 = np.poly1d(np.polyfit(x, y, 1)) # f i r s t order polynomial
p2 = np.poly1d(np.polyfit(x, y, 2)) # second order polynomia

x = np.array(x, dtype=float); y = np.array(y, dtype=float)

def func_linear(x, a, b, c, d):

return 4.160*x
popt, pcov = curve_fit(func_linear , x, y, bounds=(0, 1))

fit_linear = func_linear(x, *popt)

#xx = np. linspace (0 , 523, 1000) # measured number of compute nodes
xx = np.linspace(0, 7991, 1000) # total number of compute nodes
plt.title("Data model scope estimates")

plt.plot(x, y, ’ro’, label="Measured values", color=’darkblue’)

plt.xlabel(’# of compute nodes’, fontsize=18)

plt.ylabel(’Seconds’, fontsize=16)

# plt . plot (xx , func_linear (xx , *popt) , label="Linear" , color=’red ’)
plt.plot(xx, p1(xx), ’−−k’, label="First order polynomial", color=’darkblue’)
plt.plot(xx, p2(xx), label="Second order polynomial", color=’cyan’)

plt.legend(loc=’upper left’)

plt.show()

print(p2(7991))

print(p1(7991))

print(linregress(y, p1(x)))

print(linregress(y, p2(x)))

print(linregress(y, func_linear(x, *popt)))

Fig. 37: The program used to plot the different graphs in the estimation of time to build data models.
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Plotting program for Nova API optimizations

# −*− coding: utf−8−*−
import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

import numpy as np

import sympy as sym

x = [44, 44, 44, 44, 44, 56, 56, 56, 56, 56, 100, 100, 123, 123, 123,

123, 123, 136, 136, 136, 136, 136, 164, 164, 164, 164, 164, 167, 167, 179,

179, 180, 180, 192, 192, 208, 208, 220, 220, 223, 233, 236, 236, 259, 259,

264, 264, 287, 287, 300, 300, 331, 331, 343, 343, 344, 344, 356,

356, 387, 387, 400, 400, 423, 423, 523, 523]

y = [314, 301, 294, 295, 292, 87, 85, 85, 87, 80, 481, 483, 707, 676, 671,

694, 655, 330, 323, 319, 323, 302, 763, 738, 753, 750, 752, 848, 836, 606,

583, 629, 612, 442, 446, 894, 896, 799, 773, 755, 744, 502, 498, 816, 850,

815, 812, 1128, 1125, 877, 868, 1167, 1159, 1149, 1138, 1355, 1342, 935,

888, 1282, 1283, 1507, 1402, 1284, 1272, 2184, 2112]

z = [239, 242, 236, 238, 227, 65, 66, 64, 73, 67, 264, 261, 388, 415, 428,

410, 401, 322, 329, 325, 316, 333, 550, 525, 550, 553, 531, 445, 447, 463,

468, 387, 384, 550, 550, 551, 550, 568, 576, 589, 579, 512, 535, 588, 592,

693, 682, 773, 750, 697, 712, 881, 873, 898, 888, 1087, 1081, 831,

830, 1001, 1010, 1054, 1212, 1017, 1020, 1549, 1560]

p1 = np.poly1d(np.polyfit(x, z, 1)) # f i r s t order polynomial
p2 = np.poly1d(np.polyfit(x, y, 1)) # second order polynomial
p3 = np.poly1d(np.polyfit(x, z, 2)) # f i r s t order polynomial
p4 = np.poly1d(np.polyfit(x, y, 2)) # second order polynomial

plt.plot(x, y, ’ro’,label="Before optimizations", color=’darkblue’)

plt.plot(x, z, ’ro’,label="After optimizations", color=’red’)

x = np.array(x, dtype=float); z = np.array(z, dtype=float)

def func_linear427(x, a, b, c, d):

return 4.16*x
popt, pcov = curve_fit(func_linear427 , x, z)

def func_linear312(x, a, b, c, d):

return 3.12*x
popt3, pcov3 = curve_fit(func_linear312 , x, z)

plt.title("Comparison of build times before and after optimizations",fontsize=16)

plt.xlabel(’compute nodes’, fontsize=18)

plt.ylabel(’Seconds’, fontsize=16)

plt.plot(x, p2(x), label="unoptimized 1st polynomial", color=’darkblue’) # plot second order polynomial
plt.plot(x, p4(x), ’−−k’, label="unoptimized 2nd polynomial", color=’cyan’) # plot second order polynomial
plt.plot(x, p1(x), label="optimized 1st polynomial", color=’red’) # plot f i r s t order polynomial
plt.plot(x, p3(x), ’−−k’, label="optimized 2nd polynomial", color=’pink’) # plot f i r s t order polynomial
plt.legend(loc=’upper left’)

plt.show()

Fig. 38: The program used to plot the different graphs in the measurements of the Nova API improvements.
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Plotting program for threadpool proof of concept

# −*− coding: utf−8−*−
import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

import numpy as np

import sympy as sym

x = [44, 44, 44, 44, 44, 56, 56, 56, 56, 56, 100, 100, 123, 123, 123,

123, 123, 136, 136, 136, 136, 136, 164, 164, 164, 164, 164, 167, 167, 179,

179, 180, 180, 192, 192, 208, 208, 220, 220, 223, 233, 236, 236, 259, 259,

264, 264, 287, 287, 300, 300, 331, 331, 343, 343, 344, 344, 356,

356, 387, 387, 400, 400, 423, 423, 523, 523]

y = [314, 301, 294, 295, 292, 87, 85, 85, 87, 80, 481, 483, 707, 676, 671,

694, 655, 330, 323, 319, 323, 302, 763, 738, 753, 750, 752, 848, 836, 606,

583, 629, 612, 442, 446, 894, 896, 799, 773, 755, 744, 502, 498, 816, 850,

815, 812, 1128, 1125, 877, 868, 1167, 1159, 1149, 1138, 1355, 1342, 935,

888, 1282, 1283, 1507, 1402, 1284, 1272, 2184, 2112]

z = [239, 242, 236, 238, 227, 65, 66, 64, 73, 67, 264, 261, 388, 415, 428,

410, 401, 322, 329, 325, 316, 333, 550, 525, 550, 553, 531, 445, 447, 463,

468, 387, 384, 550, 550, 551, 550, 568, 576, 589, 579, 512, 535, 588, 592,

693, 682, 773, 750, 697, 712, 881, 873, 898, 888, 1087, 1081, 831,

830, 1001, 1010, 1054, 1212, 1017, 1020, 1549, 1560]

a = [11.532, 10.124, 10.747, 12.197, 11.309, 14.896, 14.325, 12.065, 11.881,

12.166, 22.848, 22.032, 27.955, 30.03, 25.695, 27.686, 26.64, 20.33, 21.669,

25.537, 22.108, 24.791, 36.517, 34.597, 36.072, 34.123, 41.216, 38.059, 35.528,

34.703, 35.511, 32.336, 31.133, 33.725, 32.479, 45.053, 42.677, 49.695, 41.647,

45.823, 47.501, 39.368, 39.028, 48.572, 48.818, 61.342, 51.799, 58.205, 58.691,

59.016, 54.243, 65.301, 69.586, 68.422, 73.126, 65.89, 65.878, 65.257, 60.926,

79.514, 75.817, 76.444, 71.243, 77.773, 82.464, 102.171, 106.073]

p1 = np.poly1d(np.polyfit(x, z, 1))

p2 = np.poly1d(np.polyfit(x, y, 1))

p3 = np.poly1d(np.polyfit(x, a, 1))

# x = np.arange(1 , 9000, 1)
x = np.array(x, dtype=float)

z = np.array(z, dtype=float); a = np.array(a, dtype=float)

plt.title("Comparison of build times with poc threadpool",fontsize=16)

plt.xlabel(’# of compute nodes’, fontsize=18)

plt.ylabel(’Seconds’, fontsize=16)

plt.plot(x, y, ’ro’,label="Before optimizations", color=’blue’)

plt.plot(x, z, ’ro’,label="After optimizations", color=’red’)

plt.plot(x, a, ’ro’,label="With threadpool",color=’purple’)

plt.plot(x, p1(x), label="optimized 1st polynomial", color=’pink’)

plt.plot(x, p2(x), label="unoptimized 1st polynomial", color=’cyan’)

plt.plot(x, p3(x), label="threaded 1st polynomial", color=’violet’)

plt.legend(loc=’upper left’)

plt.show()

Fig. 39: The program used to plot the different graphs when measuring the threadpool performance.
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Plotting program for comparing taskflow and threadpool

# −*− coding: utf−8−*−
import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

import numpy as np

import sympy as sym

x = [44, 44, 44, 44, 44, 56, 56, 56, 56, 56, 100, 100, 123, 123, 123, 123,

123, 136, 136, 136, 136, 136, 164, 164, 164, 164, 164, 167, 167, 179, 179,

180, 180, 192, 192, 208, 208, 220, 220, 223, 223, 236, 236, 259, 259, 264,

264, 287, 287, 300, 300, 331, 331, 343, 343, 344, 344, 356, 356, 387, 387,

400, 400, 423, 423, 523, 523]

y = [11.532, 10.124, 10.747, 12.197, 11.309, 14.896, 14.325, 12.065, 11.881,

12.166, 22.848, 22.032, 27.955, 30.03, 25.695, 27.686, 26.64, 20.33, 21.669,

25.537, 22.108, 24.791, 36.517, 34.597, 36.072, 34.123, 41.216, 38.059, 35.528,

34.703, 35.511, 32.336, 31.133, 33.725, 32.479, 45.053, 42.677, 49.695, 41.647,

45.823, 47.501, 39.368, 39.028, 48.572, 48.818, 61.342, 51.799, 58.205, 58.691,

59.016, 54.243, 65.301, 69.586, 68.422, 73.126, 65.89, 65.878, 65.257, 60.926,

79.514, 75.817, 76.444, 71.243, 77.773, 82.464, 102.171, 106.073]

z = [12.343, 11.972, 12.766, 11.555, 13.913, 31.169, 30.268, 27.459, 26.185,

28.377, 24.045, 22.855, 31.169, 30.268, 27.459, 26.185, 28.377, 22.702, 22.912,

22.605, 22.768, 24.344, 36.891, 36.503, 37.308, 37.527, 37.117, 36.596, 38.103,

37.558, 44.568, 35.189, 31.980, 32.281, 31.634, 43.949, 44.051, 52.840, 57.936,

47.512, 46.563, 43.428, 46.102, 49.053, 47.725, 54.716, 62.030, 76.841, 60.557,

57.277, 57.158, 71.441, 74.983, 68.794, 77.741, 66.508, 64.498, 65.112, 73.105,

89.003, 85.054, 79.198, 76.403, 87.435, 81.604, 101.536, 101.318]

p1 = np.poly1d(np.polyfit(x, y, 1)) # f i r s t order polynomial
p2 = np.poly1d(np.polyfit(x, z, 1)) # second order polynomial

x = np.array(x, dtype=float); z = np.array(z, dtype=float)

def func_linearthread(x, a, b, c, d):

return 0.41*x
popt, pcov = curve_fit(func_linearthread , x, y)

def func_lineartaskflow(x, a, b, c, d):

return 0.27*x
popt2, pcov2 = curve_fit(func_lineartaskflow , x, z)

plt.title("Comparison of threadpool and taskflow",fontsize=16)

plt.xlabel(’# of compute nodes’, fontsize=18)

plt.ylabel(’Seconds’, fontsize=16)

plt.plot(x, z, ’ro’,label="Taskflow", color=’blue’)

plt.plot(x, y, ’ro’,label="Threadpool", color=’red’)

#plt . plot (x , func_linearthread (x , *popt) , label="Linear 0.41x" , color=’blue ’) # plot linear for mean 316
#plt . plot (x , func_lineartaskflow (x , *popt2) , label="Linear 0.27x" , color=’red ’) # plot linear for mean 316
plt.plot(x, p2(x), label="taskflow 1st polynomial", color=’cyan’) # plot f i r s t order polynomial
plt.plot(x, p1(x), label="threadpool 1st polynomial", color=’pink’) # plot f i r s t order polynomial
plt.legend(loc=’upper left’)

plt.show()

Fig. 40: The program used compare taskflow and threadpool PoC’s
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Scatter plot program for measured vs estimated data model scope values

# −*− coding: utf−8−*−
import matplotlib.pyplot as plt

import scipy

from scipy.stats import chisquare

from scipy.stats import linregress

from scipy.optimize import curve_fit

import numpy as np

import sympy as sym

x = [44, 44, 44, 44, 44, 56, 56, 56, 56, 56, 100, 100, 123, 123, 123,

123, 123, 136, 136, 136, 136, 136, 164, 164, 164, 164, 164, 167, 167, 179,

179, 180, 180, 192, 192, 208, 208, 220, 220, 223, 233, 236, 236, 259, 259,

264, 264, 287, 287, 300, 300, 331, 331, 343, 343, 344, 344, 356,

356, 387, 387, 400, 400, 423, 423, 523, 523]

y = [314, 301, 294, 295, 292, 87, 85, 85, 87, 80, 481, 483, 707, 676, 671,

694, 655, 330, 323, 319, 323, 302, 763, 738, 753, 750, 752, 848, 836, 606,

583, 629, 612, 442, 446, 894, 896, 799, 773, 755, 744, 502, 498, 816, 850,

815, 812, 1128, 1125, 877, 868, 1167, 1159, 1149, 1138, 1355, 1342, 935,

888, 1282, 1283, 1507, 1402, 1284, 1272, 2184, 2112]

p1 = np.poly1d(np.polyfit(x, y, 1)) # f i r s t order polynomial
p2 = np.poly1d(np.polyfit(x, y, 2)) # second order polynomia

x = np.array(x, dtype=float); y = np.array(y, dtype=float)

def func_linear(x, a, b, c, d):

return x

popt, pcov = curve_fit(func_linear , x, y, bounds=(0, 1))

def func_linear_est(x, a, b, c, d):

return 4.16*x
popt2, pcov2 = curve_fit(func_linear_est , x, y, bounds=(0, 1))

xx = np.linspace(0, 2112, 1000)

plt.title("Scatter plot comparing measured vs estimated values")

plt.plot(y, p1(x), ’ro’, label="first order polynomial", color=’blue’)

plt.plot(y, p2(x), ’ro’, label="second order polynomial", color=’red’)

#plt . plot (y , func_linear (x , *popt2) , ’ro ’ , label="4.16*x" , color=’darkblue ’)
plt.xlabel(’Measured values’, fontsize=18)

plt.ylabel(’Estimated values’, fontsize=16)

plt.plot(xx, func_linear(xx, *popt), ’−−k’, label="Diagonal", color=’green’)
plt.legend(loc=’upper left’)

plt.show()

print(linregress(y, p1(x)))

print(linregress(y, p2(x)))

Fig. 41: Scatter plot program for measured vs estimated data model scope values.
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Scatter plot program for comparing threadpool and taskflow PoC’s

# −*− coding: utf−8−*−
import matplotlib.pyplot as plt

import scipy

from scipy.stats import chisquare

from scipy.stats import linregress

from scipy.optimize import curve_fit

import numpy as np

import sympy as sym

x = [44, 44, 44, 44, 44, 56, 56, 56, 56, 56, 100, 100, 123, 123, 123, 123,

123, 136, 136, 136, 136, 136, 164, 164, 164, 164, 164, 167, 167, 179, 179,

180, 180, 192, 192, 208, 208, 220, 220, 223, 223, 236, 236, 259, 259, 264,

264, 287, 287, 300, 300, 331, 331, 343, 343, 344, 344, 356, 356, 387, 387,

400, 400, 423, 423, 523, 523]

# threadpool
y = [11.532, 10.124, 10.747, 12.197, 11.309, 14.896, 14.325, 12.065, 11.881,

12.166, 22.848, 22.032, 27.955, 30.03, 25.695, 27.686, 26.64, 20.33, 21.669,

25.537, 22.108, 24.791, 36.517, 34.597, 36.072, 34.123, 41.216, 38.059, 35.528,

34.703, 35.511, 32.336, 31.133, 33.725, 32.479, 45.053, 42.677, 49.695, 41.647,

45.823, 47.501, 39.368, 39.028, 48.572, 48.818, 61.342, 51.799, 58.205, 58.691,

59.016, 54.243, 65.301, 69.586, 68.422, 73.126, 65.89, 65.878, 65.257, 60.926,

79.514, 75.817, 76.444, 71.243, 77.773, 82.464, 102.171, 106.073]

# taskflow
z = [12.343, 11.972, 12.766, 11.555, 13.913, 31.169, 30.268, 27.459, 26.185,

28.377, 24.045, 22.855, 31.169, 30.268, 27.459, 26.185, 28.377, 22.702, 22.912,

22.605, 22.768, 24.344, 36.891, 36.503, 37.308, 37.527, 37.117, 36.596, 38.103,

37.558, 44.568, 35.189, 31.980, 32.281, 31.634, 43.949, 44.051, 52.840, 57.936,

47.512, 46.563, 43.428, 46.102, 49.053, 47.725, 54.716, 62.030, 76.841, 60.557,

57.277, 57.158, 71.441, 74.983, 68.794, 77.741, 66.508, 64.498, 65.112, 73.105,

89.003, 85.054, 79.198, 76.403, 87.435, 81.604, 101.536, 101.318]

x = np.array(x, dtype=float); y = np.array(y, dtype=float)

def func_linear(x, a, b, c, d):

return x

popt, pcov = curve_fit(func_linear , x, y, bounds=(0, 1))

xx = np.linspace(0, 107, 1000)

plt.title("Scatter plot comparing threadpool vs taskflow")

plt.plot(y, z, ’ro’, label="Data", color=’blue’)

#plt . plot (y , func_linear (x , *popt2) , ’ro ’ , label="4.16*x" , color=’darkblue ’)
plt.xlabel(’Threadpool values’, fontsize=16)

plt.ylabel(’Taskflow values’, fontsize=16)

plt.plot(xx, func_linear(xx, *popt), ’−−k’, label="Diagonal", color=’green’)
plt.legend(loc=’upper left’)

plt.show()

print(linregress(y, z))

Fig. 42: Scatter plot program for comparing threadpool and taskflow PoC’s.
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